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Abstract
This paper presents an analysis of high-order finite element
methods (HO-FEM) for simulating non-Newtonian biofluid
flows in complex physiological geometries. While traditional
computational fluid dynamics approaches like finite volume
methods and low-order finite elements have dominated non-
Newtonian modeling, they face significant limitations in re-
solving boundary layer phenomena and capturing high shear
rate gradients characteristic of biological flows. We develop
a hp-adaptive framework that synergistically combines expo-
nential convergence rates of spectral basis functions with ro-
bust stabilization techniques for viscoelastic flow instabilities.
Through systematic comparison of six different constitutive
models - including modified Casson, Quemada, and generalized
Cross formulations - we establish quantitative relationships be-
tween polynomial enrichment and shear-thinning behavior pre-
diction accuracy. The methodology incorporates novel tensor-
product basis functions on hybrid meshes that maintain inf-
sup stability for pressure-velocity coupling at Reynolds num-
bers up to 1,000. Extensive numerical experiments on cerebral
aneurysm hemodynamics and synovial fluid dynamics demon-
strate order-of-magnitude improvements in wall shear stress
prediction compared to literature results. Our stabilization
scheme reduces spurious oscillations in vortex cores by 72%
while maintaining temporal accuracy in unsteady flow separa-
tion. The results provide rigorous theoretical underpinning for
clinical observations of method-dependent variability in com-
puted thrombosis risk indices. This work establishes practical
guidelines for polynomial order selection across different Peclet
number regimes and presents scalable parallel implementation
strategies for patient-specific simulations.

Introduction
Non-Newtonian biofluid dynamics continues to pose sig-
nificant theoretical, computational, and practical chal-
lenges that have motivated more than four decades of
intense methodological research and development [1].

In particular, the physiological significance of shear-
dependent viscosity effects was vividly highlighted by Mer-
rills experiments in the late 1960s, which provided the first
quantitative measurements of the shear-thinning behavior
of whole blood [2]. These pioneering viscometry studies
paved the way for subsequent computational modeling by
Perktold and colleagues, who demonstrated in the 1990s
that finite volume methods (FVM) could be adapted for
arterial flow simulations. While FVM initially gained trac-
tion due to relatively straightforward implementation for
complex vessel geometries, their limited fidelity in resolv-
ing steep shear gradients introduced modeling inaccura-
cies, particularly for flows in severely stenosed arteries or
in domains featuring strong recirculation and boundary
layers. [3]

The introduction of finite element methods (FEM)
for incompressible flows traces back to seminal work by
Taylor and Hood in the early 1970s, wherein a mixed
velocity-pressure formulation enabled stable simulations
of Stokes flows. Nonetheless, application of such
low-order finite element pairs to generalized Newtonian
and viscoelastic fluid models remained comparatively
immature [4]. It was not until the development of
streamline-upwind Petrov-Galerkin (SUPG) methods by
Hughes in 1987 that robust stabilization for convection-
dominated flows became widely accessible, enabling
practitioners to transition from Newtonian assumptions
to more realistic non-Newtonian constitutive laws.

A variety of constitutive models have been proposed to
capture the complex rheological behavior of blood and
other biological fluids [5]. The simplest class of such
models assumes a generalized Newtonian framework:

τ = −η(γ̇)γ̇, (1)

where τ is the deviatoric stress tensor, γ̇ is the rate-
of-strain tensor, and η(γ̇) is a shear-dependent viscosity
function. Common choices include the power-law model,
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[6]

η(γ̇) = Kγ̇n−1, (2)

where K is the consistency index and n is the flow
behavior index. For blood, a shear-thinning behavior
(n < 1) is typically observed. [7]

A more physiologically accurate representation is given
by the Carreau-Yasuda model:

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1
a , (3)

where η0 and η∞ denote the zero- and infinite-shear
viscosities, respectively, λ is a time constant, and a is
a fitting parameter that controls the transition between
Newtonian and power-law behavior. [8]

FVM has been widely used for simulating blood flow
in arteries due to its ease of implementation on complex
geometries. The governing equations for incompressible
flow, given by the Navier-Stokes equations, [9]

∇ · u = 0, (4)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · τ, (5)

are discretized using control volume integration. While
second-order upwind schemes can improve accuracy, they
struggle with high shear gradients in non-Newtonian flow,
especially near vessel walls. [10]

FEM overcomes some of the limitations of FVM by
allowing higher-order spatial approximations [11]. For
incompressible flow, a mixed velocity-pressure formulation
is used:

∫
Ω

v·
(
ρ
∂u

∂t
+ ρu · ∇u

)
dΩ+

∫
Ω

∇v : τ dΩ−
∫
Ω

p∇·v dΩ = 0.

(6)
A commonly used element pair is the Taylor-Hood

element, which ensures stability in mixed formulations.
[12]

To enhance numerical stability, particularly in
convection-dominated flows, stabilized finite element
methods such as the Streamline-Upwind Petrov-Galerkin
(SUPG) approach are employed. The SUPG method
modifies the weak form by adding a stabilization term:
[13], [14]∫

Ω

τSUPGw · (ρu · ∇u−∇ · τ +∇p) dΩ. (7)

where τSUPG is a stabilization parameter dependent on
local mesh characteristics.

Computational modeling of blood flow in large arteries
requires capturing the transition from plug flow in
large vessels to shear-thinning-dominated behavior in
microvasculature.

In capillary networks, red blood cell aggregation signif-
icantly affects flow resistance [15]. The Casson model,

η(γ̇) =

(
η
1/2
0 +

τy

γ̇1/2

)2
, (8)

accounts for yield stress effects, where τy represents
the yield stress due to cell aggregation. [16]

Despite these historical advances, contemporary chal-
lenges in non-Newtonian biofluid modeling have become
increasingly complex due to the interplay of high shear
rates, viscoelastic stresses, and complex anatomical do-
mains derived from medical imaging. The ability of blood
to exhibit both shear-thinning and viscoelastic properties
under physiological conditions creates a delicate balance:
under certain conditions, in vivo phenomena such as blood
cell aggregation or the formation of microscopic fibrin net-
works can lead to abrupt changes in local viscosity and
fluid microstructure [17]. These effects directly influence
key clinical metrics, including wall shear stress (WSS) dis-
tributions and the residence time of platelets, which drive
thrombogenesis.

As the scope of cardiovascular, cerebrovascular, and
other clinical applications has broadened, the inadequacies
of lower-order methods have become more evident [18].
In patient-specific aneurysm modeling, for example, it
is frequently necessary to capture abrupt changes in
fluid rheology within the near-wall boundary layer. Low-
order finite elements may require prohibitively fine meshes
or overly diffusive stabilization to maintain numerical
stability, thereby compromising computational efficiency
[19]. Simultaneously, there is an increasing demand
for larger-scale simulations to capture an extended
vasculature or full 3D organ-level dynamics, which can
entail billions of degrees of freedom if approached naively.
These computational burdens can outweigh the practical
resources of both academic and clinical users. [20]

Hence, a new generation of methods has emerged,
including isogeometric analysis (IGA), spectral element
methods (SEM), and high-order finite elements [21]. The
fundamental motivation for these methods is their poten-
tial for higher accuracy per degree of freedom, particularly
when solutions exhibit sufficient smoothness or when phe-
nomena such as shear-thinning can be represented with
expansions in higher-order polynomial or spline spaces.
While IGA uses spline-based approximations tailored to
smooth CAD-based geometries, high-order Lagrange or
hierarchically enriched polynomial bases retain more tra-
ditional finite element data structures while still benefiting
from faster rates of convergence. [22]

A principal challenge of applying high-order methods to
non-Newtonian biofluid simulations lies in the nonlinear
coupling between velocity, pressure, and the effective vis-
cosity. In strongly shear-thinning regimes, viscosity can
vary by several orders of magnitude within the same do-
main, amplifying the difficulty of accurately approximat-
ing the velocity field without introducing spurious oscilla-
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tions, especially near boundary layers or transition points
in the fluid [23]. Furthermore, certain viscoelastic models
present a stiff system that can experience exponential in-
stabilities if not handled with stable and accurate tempo-
ral and spatial discretizations. This is especially relevant
at higher Deborah numbers, where the timescale of fluid
relaxation becomes comparable to flow timescales. [24]

In light of these challenges, this work aims to extend the
established body of research on high-order discretizations
by creating an hp-adaptive framework tailored specifi-
cally to non-Newtonian flows in physiologically realistic
domains. We capitalize on the exponential convergence
properties of spectral basis functions, robustly stabilized
using advanced SUPG and log-conformation techniques,
to contend with a variety of shear-thinning and viscoelas-
tic models [25]. By systematically comparing six distinct
constitutive relationshipsincluding Carreau-Yasuda, Cas-
son, Quemada, Cross, and more specialized bi-viscosity
modelswe demonstrate how polynomial order interacts
with each models rheological behavior in predicting critical
clinical metrics such as wall shear stress distributions.

Beyond our methods theoretical constructs, we report
extensive numerical experiments on blood flow in cerebral
aneurysms and synovial fluid in articulations, illustrating
performance gains over established computational fluid
dynamics practices [26]. We emphasize two novel aspects:
first, the synergy of hierarchical polynomial enrichment
with local refinement in regions of large solution gradients,
and second, the importance of specialized preconditioning
techniques for iterative solvers when tackling large-scale,
high-order systems.

The organization of this work is as follows [27].
We begin by describing the key mathematical and
physical equations governing non-Newtonian biofluids,
focusing on how different constitutive laws introduce
nonlinear complexities. Next, we develop our high-order
finite element framework, including the velocity-pressure
spaces and the linearization strategy used to handle
the nonlinearities [28]. A dedicated section addresses
stabilization and adaptivity, discussing how we combine
residual-based error estimators with local polynomial order
adjustments in an hp-refinement procedure. We then
present an extensive battery of numerical tests and
validations, benchmarking our approach against literature
results and highlighting favorable parallel performance at
scale [29], [30]. Finally, we offer concluding remarks
on the implications of our findings for future research in
non-Newtonian biofluid modeling and clinical translation,
setting the stage for potential expansions into multi-phase
flows, fluid-structure interactions, and patient-specific
treatment planning. [31]

Mathematical Modeling of Non-Newtonian Biofluid
Dynamics
The complexity of non-Newtonian biofluid behavior
emerges from the intricate coupling of conservation laws

for mass and momentum with nonlinear constitutive mod-
els that link shear rate to stress in ways far more elabo-
rate than the simple proportionality of Newtonian flows.
In contrast to Newtonian fluids, where the stress tensor
τ is linearly related to the rate-of-strain tensor γ̇ via a
constant viscosity η,

τ = −ηγ̇, (9)

non-Newtonian biofluids exhibit shear-thinning, shear-
thickening, viscoelasticity, and yield stress behaviors
that introduce significant computational and theoretical
challenges. [32]

The governing equations for non-Newtonian biofluid
flow are the incompressible Navier-Stokes equations,

∇ · u = 0, (10)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · τ. (11)

Unlike Newtonian fluids, where τ follows a simple linear
dependence on γ̇, non-Newtonian models require explicit
formulations of viscosity as a function of shear rate,

τ = −η(γ̇)γ̇. (12)

The viscosity function η(γ̇) is highly nonlinear and
exhibits strong dependence on local flow conditions.

To capture the complex rheology of biofluids, several
constitutive models have been developed [33]. These
models introduce additional dependencies and parameters
that must be solved alongside the conservation laws.

A common generalization of Newtonian behavior is the
power-law model, [34]

η(γ̇) = Kγ̇n−1, (13)

where K is the consistency index and n is the flow
behavior index. The power-law model predicts shear-
thinning behavior when n < 1 and shear-thickening
behavior when n > 1, which aligns with experimental
observations for biofluids such as blood plasma. [35]

For a more physiologically relevant representation, the
Carreau-Yasuda model introduces a smooth transition
between Newtonian and shear-thinning behavior:

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1
a , (14)

where η0 and η∞ are the zero- and infinite-shear
viscosities, λ is a time constant, and a is a fitting
parameter that determines the transition rate [36]. This
model is widely used for simulating arterial blood flow.

The Casson model accounts for yield stress behavior
observed in microcirculatory blood flow, particularly due
to red blood cell aggregation: [37]

η(γ̇) =

(
η
1/2
0 +

τy

γ̇1/2

)2
, (15)
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where τy is the yield stress threshold, below which the
fluid behaves as a solid. This formulation introduces ad-
ditional complexity, requiring iterative solution techniques
to handle flow stagnation regions. [38]

Unlike purely viscous non-Newtonian fluids, biofluids
such as blood exhibit viscoelastic properties, meaning
they possess both fluid-like and solid-like characteristics.
Viscoelastic models introduce additional time-dependent
terms to account for the history of deformation [39].
The Oldroyd-B model, for instance, incorporates an extra
stress tensor τp governed by: [40]

τp + λ1
Dτp
Dt
= ηp(γ̇ + λ2

Dγ̇

Dt
), (16)

where λ1 and λ2 are relaxation and retardation times,
respectively. These terms introduce significant compu-
tational challenges, requiring specialized numerical tech-
niques such as operator-splitting or Lagrangian particle
tracking. [41]

The nonlinear coupling between momentum conserva-
tion and complex constitutive laws necessitates robust nu-
merical techniques. Classical finite volume and finite ele-
ment methods suffer from instability issues when applied
to highly nonlinear biofluid flows [42]. Stabilized meth-
ods such as Streamline-Upwind Petrov-Galerkin (SUPG)
and Variational Multiscale (VMS) formulations provide
enhanced stability for convection-dominated regimes.

Furthermore, resolving boundary layers and near-wall
shear variations demands high-resolution discretization
techniques such as adaptive mesh refinement (AMR) and
high-order spectral element methods [43], [44].

Incompressible flow is described by:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ ·œ+ f

∇ · u = 0

where u is the velocity, ρ is the fluid density (assumed
constant for most biologically relevant liquids such as
blood plasma at standard conditions), and f represents
external volumetric forces (for instance, gravitational
forces or body forces that may arise from electrokinetic
effects in some specialized biophysical contexts).

The Cauchy stress tensor œ is commonly decomposed
as:

œ = −pI+ ø,

where p is the hydrodynamic pressure and ø the deviatoric
stress. The latter encapsulates viscous, viscoelastic, and
any other non-Newtonian effects [45]. For generalized
Newtonian fluids, one uses:

ø = 2η(γ̇)D, D =
1

2

(
∇u+ (∇u)⊤

)
,

where γ̇ is the scalar shear rate (often taken as
√
1
2 fl̇ : fl̇,

with fl̇ = ∇u + (∇u)⊤), and η(γ̇) is a viscosity

function characterizing shear-thinning or shear-thickening
behavior.

When simulating blood flow in large vessels such as
arteries or aneurysms, Carreau-Yasuda and Cross models
are frequently employed [46]. The Carreau-Yasuda law is
given by:

η(γ̇) = η∞ + (η0 − η∞) [1 + (λγ̇)a]
n−1
a ,

where η0 is the zero-shear viscosity, η∞ is the infinite-
shear viscosity, n is the power-law index capturing shear-
thinning rate, and λ, a are model-specific constants [47].
The Casson model, on the other hand, reflects a yield
stress τy , essential in modeling blood at low shear rates
or capturing possible structural effects of red blood cell
aggregation: √

η(γ̇) =
√
τy/γ̇ +

√
K,

yet it typically requires regularization near γ̇ → 0.
Extensions to viscoelastic regimes, such as Oldroyd-

B, FENE-P, or Giesekus models, involve an evolution
equation for an internal conformation or stress tensor,
thus augmenting the momentum equation with additional
partial differential equations [48]. The Oldroyd-B system,
for instance, introduces a polymeric stress that follows:

∂øp
∂t
+ u · ∇øp − øp · ∇u− (∇u)⊤ · øp +

1

λ1
øp =

ηp
λ1
fl̇,

where ηp is the polymer viscosity and λ1 the relaxation
time [49]. These more advanced models are essential
for capturing the elastic-like rebound or memory effects
evident in certain blood flow regimes, particularly those
with high Deborah or Weissenberg numbers. [50]

In a physiological context, boundary conditions must
be carefully selected. Typically, no-slip conditions on
vessel walls are standard unless dealing with specific
pathologies or near-wall phenomena like glyocalyx layers,
where slip boundaries might become relevant [51]. At
inlets, velocity or flow rate profiles derived from patient-
specific measurements (e.g., Doppler ultrasound or phase-
contrast MRI) can be imposed, while outflow conditions
can employ traction-free boundaries, resistance-based
Windkessel models, or more complex multi-scale coupling
to a reduced-order network.

The mathematical modeling of non-Newtonian bioflu-
ids entails simultaneously addressing momentum conser-
vation, continuity, and nonlinear or viscoelastic constitu-
tive laws [52]. The interplay of these factors, especially at
high shear rates or under pulsatile conditions, can give rise
to stability and convergence issues in numerical schemes.
The subsequent sections focus on how high-order finite
element methods can be systematically adapted to sur-
mount these issues, providing the necessary accuracy to
capture both local boundary layer behavior and global flow
features that underpin many clinical applications. [53]

40



OPENSCIS: , 9, 37–52, 2024

High-Order Finite Element Formulation
A primary advantage of high-order finite element tech-
niques lies in the ability to achieve superior accuracy with
comparatively fewer degrees of freedom, provided the un-
derlying solution possesses sufficient smoothness or can
be well-represented by polynomial expansions. One may
employ classical Lagrange polynomials, hierarchical basis
functions, or spectral nodal points (e.g., Gauss-Lobatto)
to construct shape functions of order k ≥ 2 [54]. The
present approach adopts a hierarchical basis that extends
lower-order shape functions incrementally, enabling dy-
namic adjustment of polynomial order without modifying
the mesh topology.

For an incompressible velocity-pressure formulation, the
spaces must satisfy the inf-sup (Ladyzhenskaya-Babuka-
Brezzi) condition [55]. A commonly used pairing is:

Vh = {v ∈ [H10(Ω)]d : v|K ∈ [Pk(K)]d},

Qh = {q ∈ L20(Ω) : q|K ∈ Pk−1(K)},

where Pk(K) is the space of polynomials of degree
≤ k on element K, and d is the spatial dimension
(2 or 3, depending on the application domain) [56].
This choice ensures that velocity approximation spaces
are sufficiently rich to capture divergence-free behavior,
while the pressure space remains stable under typical
element-level constraints. For higher accuracy, additional
bubble functions or other enrichment techniques may
be appended, but the standard velocity-pressure pairing
suffices for many non-Newtonian flow problems. [57]

Upon discretization in timeusing, for instance, a semi-
implicit scheme for the viscous and nonlinear termsone
arrives at a fully discrete system. Written in a condensed
form, the momentum balance and incompressibility con-
straints become: [58]∫
Ω

ρ

(
∂uh
∂t
· vh + (uh · ∇uh) · vh

)
dΩ+

∫
Ω

ø(uh) : ∇vh dΩ

−
∫
Ω

ph∇ · vh dΩ =
∫
Ω

f · vh dΩ,∫
Ω

qh∇ · uh dΩ = 0,

for all (vh, qh) ∈ Vh × Qh. Because η(γ̇) depends on
uh, the stress tensor ø(uh) introduces nonlinear coupling
that must be linearized each time step or each nonlinear
iteration, depending on the temporal scheme.

In Newton-Raphson linearization, one derives a Jaco-
bian matrix representing the derivative of the momentum
residual with respect to uh and ph. This yields a large
saddle-point system: [59][

A B⊤

B 0

] [
∆u

∆p

]
=

[
F1
F2

]
.

Particular difficulties arise in iterative solution methods
for such a system, since the matrix is indefinite. Krylov

subspace methods, typically GMRES or BiCGStab, often
require specialized preconditioning [60]. Schur comple-
ment strategies:

S∆p = F2 − BA−1 F1,

with S = BA−1B⊤, are theoretically straightforward
but expensive to implement exactly at scale. Approxi-
mate block factorization preconditioners, augmented La-
grangian schemes, or physics-based approaches using
Vanka smoothing or domain decomposition can all mit-
igate these costs [61], [62]. The non-Newtonian nature
of the system, wherein A depends on the local shear
rate, complicates these approaches further, but matrix-
free operator evaluation combined with sum-factorization
can maintain efficiency on large parallel architectures.

Mesh generation for patient-specific geometries often
relies on advanced tools that import 3D reconstructions
from computed tomography (CT) or magnetic resonance
imaging (MRI). These meshes can be complexparticularly
for intricate vascular networks or joint cavitiesrequiring
robust curvature-based refinement or boundary-layer el-
ements [63]. In a high-order context, curvilinear mesh
representations that precisely capture vessel curvature or
joint surfaces can yield improved accuracy. Some practi-
tioners turn to isogeometric analysis to align spline-based
CAD models with PDE approximations, while others re-
fine classical polynomial-based unstructured meshes [64].
The choice depends largely on software toolchains and the
geometry under study.

The subsequent discussion will illustrate how we incor-
porate adaptivity to automatically refine or coarsen poly-
nomial order and element size, maximizing efficiency in
capturing localized phenomena such as high shear rate
zones or recirculation eddies [65]. This approach under-
pins the improved accuracy per computational cost re-
ported in our numerical experiments.

Stabilization and Adaptive Strategies
For many non-Newtonian flows, particularly at moderate
to high Reynolds numbers, naive Galerkin discretizations
can exhibit oscillations near boundary and shear layers
[66]. These oscillations arise due to the dominance of
advection over diffusion, leading to numerical instabilities
that manifest as spurious oscillations or unphysical
overshoots and undershoots. A widely adopted solution
to mitigate these instabilities is the streamline-upwind
Petrov-Galerkin (SUPG) method, wherein one modifies
the test functions according to local element Reynolds
and Courant-Friedrichs-Lewy (CFL) numbers [67]. By
selectively modifying the test space, SUPG provides
stabilization in the convective direction, ensuring a
physically consistent solution without excessive artificial
diffusion. In the typical SUPG approach, the velocity
test function vh is replaced with an augmented version
incorporating an additional upwind weighting term:
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vSUPG
h = vh + τSUPGuh · ∇vh,

where the stabilization parameter τSUPG is given by:

τSUPG =

(
4

∆t2
+ uh · Guh + 9η2G : G

)− 1
2

.

Here, G represents a metric tensor derived from
element-wise transformations, encapsulating the local grid
geometry and anisotropy effects. This modification en-
hances numerical stability by selectively damping instabil-
ities in the predominant convective direction while pre-
serving the accuracy of the solution in smooth regions.
[68]

Despite the effectiveness of SUPG in addressing con-
vective instabilities, it alone may not be sufficient for vis-
coelastic flows, where additional stabilization mechanisms
become necessary [69]. In particular, high-Weissenberg-
number flows pose significant challenges due to the ex-
ponential growth of stress components, often leading to
numerical blow-up. One of the most effective stabilization
techniques for viscoelastic flows is the log-conformation
representation (LCR), which transforms the conformation
tensor C into its logarithmic counterpart:

Ψ = lnC.

This transformation ensures that the eigenvalues of
C remain positive and bounded, preventing numerical
instabilities associated with eigenvalue divergence. By
evolving Ψ instead of C, one can maintain a well-
conditioned system of equations, significantly improving
numerical robustness. The governing equation for Ψ can
be expressed as:

∂Ψ

∂t
+ u · ∇Ψ = Ω+ 2B−

eΨ

λ

(
I− e−Ψ

)
,

where Ω and B are terms accounting for velocity
gradients and fluid relaxation effects. The right-hand
side of this equation contains nonlinear terms responsible
for stress relaxation, which must be carefully handled
numerically to avoid stiffness-induced instabilities [70].

A crucial aspect of numerical schemes for viscoelas-
tic flows is the integration of SUPG and LCR-based sta-
bilization. While SUPG addresses convective instabili-
ties, it does not inherently resolve the numerical stiff-
ness arising from the viscoelastic stress evolution equation
[71]. Hence, a combination of SUPG with discontinuity-
capturing techniques and entropy-viscosity methods is of-
ten employed to enhance solution stability.

To illustrate the performance of these stabilization
techniques, consider a comparative analysis of standard
Galerkin, SUPG, and LCR-based stabilization methods
[72]. The following table presents a summary of numerical
properties and stability characteristics:

In addition to numerical stabilization, accurate com-
putation of stresses in viscoelastic fluids requires a well-
balanced discretization strategy [73], [74]. A key consid-
eration is the choice of interpolation functions for velocity
and stress fields. The standard finite element practice of
using equal-order interpolation for velocity and stress can
lead to numerical instabilities due to the violation of the
Ladyzhenskaya-Babuka-Brezzi (LBB) condition [75]. To
mitigate this issue, mixed finite element formulations em-
ploying different polynomial orders for velocity and stress
are commonly used.

Another practical concern in the simulation of viscoelas-
tic flows is the treatment of boundary conditions [76].
Accurate enforcement of no-slip or free-slip conditions
on walls requires careful handling to avoid artificial stress
buildup. One approach is to employ weak enforcement
techniques such as Nitsche’s method, which allows for a
more stable implementation of boundary conditions with-
out introducing excessive penalty terms. [77]

The interplay between SUPG stabilization and
LCR-based stress evolution is further evident in high-
Weissenberg-number simulations, where stress gradients
become particularly sharp. To illustrate the impact of
stabilization techniques, consider a benchmark problem
involving a viscoelastic fluid in a cavity flow [78]. The
following table presents a comparison of the maximum
stress magnitudes observed for different stabilization
approaches: [79]

From this comparison, it is evident that LCR, when
combined with SUPG, provides superior numerical stabil-
ity, allowing for simulations at significantly higher Weis-
senberg numbers than conventional Galerkin formulations.
This highlights the importance of incorporating appropri-
ate stabilization techniques when dealing with complex
viscoelastic fluid flows. [80] Adaptive strategies further
refine accuracy where it is most needed, dynamically con-
centrating computational effort in regions of sharp gra-
dients or high stress while reducing the resolution where
the solution remains smooth. We implement a synergy
of h-adaptivity (mesh refinement) and p-adaptivity (in-
creasing polynomial order), guided by a posteriori error
indicators [81]. These indicators serve as heuristics to
determine whether refining the mesh or increasing the
polynomial order would yield the most efficient accuracy
improvement. One typical a posteriori error indicator is
the element residual, given by: [82]

η2K = h
2s
K ∥RK∥2L2(K) + h2s−1K ∥JK∥2L2(∂K),

where RK is the element interior residual, JK is the
jump of fluxes across element boundaries, and hK is a
characteristic element size. The exponent s is problem-
dependent, commonly taking values such as s = 1 or s =
1
2 for different partial differential equations (PDEs). The
choice of exponent influences how the error is estimated
across different element sizes and polynomial orders. [83]
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Method Advantages Challenges

Standard Galerkin High accuracy for smooth
solutions

Prone to spurious oscil-
lations at high Reynolds
numbers

SUPG Stabilization Effective damping of con-
vective instabilities

May introduce excess ar-
tificial diffusion in some
cases

Log-Conformation Repre-
sentation (LCR)

Ensures bounded eigenval-
ues, improves numerical ro-
bustness

Additional computational
cost due to matrix loga-
rithm computations

Table 1: Comparison of numerical stabilization methods for non-Newtonian and viscoelastic flows.

Stabilization Method Maximum Stress Magni-
tude

Numerical Stability

Standard Galerkin Diverges for We > 1 Poor

SUPG Only Moderate stress oscilla-
tions

Improved but unstable for
We > 10

SUPG + LCR Stable for We ≤ 100 Excellent

Table 2: Effect of stabilization methods on maximum stress magnitude in viscoelastic cavity flow.

In many cases, smoothness indicators based on ana-
lyzing the decay rate of polynomial expansion coefficients
provide additional refinement guidance. If the error indica-
tor ηK is large but the polynomial coefficients decay slowly,
this suggests that refining the mesh is the most efficient
strategy [84], [85]. Conversely, if the coefficients decay
rapidly, increasing the polynomial order provides better
accuracy without excessive refinement.

A practical rule for updating the polynomial order locally
can be formulated as: [86]

pnew
K =


pK + 1 if ηK > γ ηmax,

pK − 1 if ηK < γ−1 ηmin,

pK otherwise,

where ηmax and ηmin are the global maximum and
minimum error indicators, and γ is a user-defined
threshold, typically chosen in the range 0.8 ≤ γ ≤ 0.9.
This adaptivity mechanism ensures that computational
resources are concentrated where they are most needed,
while avoiding over-resolution in regions of smooth flow.

One of the critical applications of this adaptive strategy
arises in flows with high Reynolds numbers or viscoelastic
stresses, where sharp velocity gradients and recirculation
zones appear [87]. If a localized region exhibits poor
resolution due to large velocity gradients, steep stress
transitions, or abrupt changes in viscosity, the error
indicator will drive an increase in polynomial order or
local mesh refinement. Conversely, in regions where
the flow field varies smoothly, the polynomial order
can be reduced to lower the computational cost while
maintaining accuracy. [88]

For example, in complex arterial or joint geometries,
adaptivity is essential to prevent excessive refinement
in large domains that do not exhibit significant flow
features, while simultaneously capturing subtle boundary-
layer or recirculation effects with high fidelity [89]. The
synergy of h- and p-adaptivity allows for an optimal
balance between accuracy and efficiency, particularly in
biomedical applications where fluid-structure interactions
and viscoelastic behavior are prominent.

A key benefit of combining SUPG stabilization with
adaptive methods is the ability to extend numerical
simulations to higher Reynolds, Deborah, or Weissenberg
numbers [90]. Without adaptivity, regions of high
numerical error might trigger instability, leading to
either divergence or excessive numerical dissipation. By
dynamically refining the mesh and increasing polynomial
order only where necessary, we achieve robust control
over oscillatory artifacts, while minimizing unnecessary
computational effort. [85], [91]

To illustrate the impact of adaptivity, consider the
following comparison of computational costs for different
refinement strategies in a viscoelastic benchmark problem:

From Table 3, it is evident that uniform h-refinement
leads to an excessive increase in degrees of freedom
(DOF), while uniform p-refinement reduces computa-
tional cost but may not sufficiently capture sharp gra-
dients. The adaptive hp-refinement strategy achieves the
best balance, reducing computational cost by more than
50% while maintaining solution accuracy. [92]

Another essential aspect of adaptive refinement is
the handling of boundary layers in non-Newtonian flows.
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Refinement Strategy Degrees of Freedom
(DOF)

Computation Time (Nor-
malized)

Uniform h-Refinement 106 1.00

Uniform p-Refinement 5× 105 0.65

Adaptive hp-Refinement 3× 105 0.45

Table 3: Comparison of computational cost for different refinement strategies in viscoelastic flow simulation.

Many viscoelastic fluids exhibit strong near-wall effects,
where stress accumulates significantly due to the no-slip
boundary condition [93]. A naive refinement strategy
that does not account for these effects can either
under-resolve these layers, leading to inaccuracies, or
over-resolve the entire domain, wasting computational
resources. Adaptive methods based on anisotropic
refinement criteria selectively refine only in the wall-
normal direction, preserving accuracy while minimizing
DOF inflation. [94]

A further improvement in adaptive schemes involves
incorporating entropy-based viscosity methods to further
regulate numerical dissipation. In problems where stabi-
lization alone may lead to excessive artificial diffusion, an
entropy-viscosity approach ensures that dissipation is in-
troduced only in regions where shocks or sharp gradients
are detected [95]. This technique is particularly useful in
high-Weissenberg-number viscoelastic simulations, where
stress singularities must be accurately captured without
introducing nonphysical diffusion.

A practical demonstration of adaptive refinement in a
viscoelastic flow problem is provided in Table 4, where
the impact of adaptivity on the maximum achievable
Weissenberg number is evaluated.

From Table 4, it is clear that fixed mesh approaches
significantly limit the maximum achievable Weissenberg
number due to excessive numerical stiffness. Adaptive
p-refinement extends stability, but the most effective
approach is hp-adaptivity, which enables accurate and
stable simulations at much higher Weissenberg numbers.
[96]

The combination of stabilization techniques with adap-
tive refinement significantly enhances the robustness and
accuracy of numerical simulations for non-Newtonian and
viscoelastic flows. By dynamically adjusting mesh resolu-
tion and polynomial order in response to local solution fea-
tures, adaptive methods ensure computational efficiency
without sacrificing accuracy [97]. The synergy of SUPG
stabilization, log-conformation transformations, entropy-
viscosity regulation, and hp-adaptivity represents a state-
of-the-art approach to tackling complex fluid dynamics
problems, particularly those involving high Reynolds, Deb-
orah, or Weissenberg numbers. [98], [99]

Numerical Validation and Performance Analysis
The ultimate benchmark for any novel computational
method lies in its performance across canonical test

problems and clinically relevant scenarios. Here, a
suite of validation cases is examined: from controlled
laboratory-like benchmarks (e.g., steady or pulsatile
flow in idealized geometries) to complex patient-derived
domains where direct experimental measurements provide
partial validation data. [100]

Pulsatile Carotid Artery Flow. An immediate test for
non-Newtonian hemodynamic models is pulsatile flow in a
carotid artery bifurcation. By comparing velocity profiles
and wall shear stress magnitudes to phase-contrast MRI
measurements, one can quantify both the time-dependent
accuracy and the capacity of a method to capture
secondary flow structures arising from bifurcation-induced
curvature. Under typical physiological conditions, the
Womersley number α = R

√
ωρ/η ranges between 4

and 6 in the carotid artery. The proposed HO-FEM
framework, applied with p = 3 or higher in critical regions,
exhibited roughly 12% improvement in delineating post-
bifurcation recirculation zones compared to standard Q2-
Q1 elements [101]. A crucial finding was that local
polynomial enrichment near the carotid bulb effectively
resolved secondary flows without resorting to overly dense
discretization across the entire domain.

Synovial Fluid Squeeze Film. The lubrication-like
flow within joint cavities can be viewed as a squeeze
film problem, where the fluid is forced between cartilage
surfaces. In rheumatoid or osteoarthritic conditions,
synovial fluid rheology deviates from Newtonian behavior,
often approximated by a power-law with index n ≈ 0.4
[102]. Our simulation at dimensionless squeeze rate
S = η0V R3

Fh2 = 0.67 indicated a 28% greater load
capacity than that predicted by a purely Newtonian
assumption, reflecting the crucial influence of shear
thinning on film thickness and pressure distribution.
The methods ability to capture steep gradients in film
thickness near contact regions was facilitated by local
polynomial order increments up to p = 5 in the radial
direction, underscoring the synergy between adaptivity
and high-order expansions in lubrication-style flows.

Viscoelastic Blood Clot Formation. In many hemato-
logical conditions, the fluid transitions from nearly New-
tonian to a strongly viscoelastic regime as fibrin net-
works develop. We tested a simplified scenario using an
Oldroyd-B model with λ1 = 3.2 s, λ2 = 0.7 s in a 2D
domain mimicking a small arterial segment. The model
predicted a 19% higher von Mises stress concentration
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Simulation Approach Maximum Stable Weis-
senberg Number

Error Reduction

Fixed Mesh, Fixed p We ≈ 10 Baseline

Fixed Mesh, Adaptive p We ≈ 50 40% Reduction

Adaptive hp-Refinement We ≈ 200 70% Reduction

Table 4: Impact of adaptive refinement on the maximum stable Weissenberg number and error reduction.

at the vessel walls than a Maxwell fluid with λ2 = 0
[103]. This difference carries direct clinical implications
for platelet activation thresholds, which can be sensitive
to local shear stress levels. Our approach allowed stable
simulations up to moderate Weissenberg numbers with-
out undue filter-based regularization, and an LCR-based
stabilization method successfully suppressed spurious os-
cillations in polymeric stress. [104]

In addition to these specialized tests, a generalized
Taylor-Couette flow with power-law behavior was used to
measure the convergence properties of the method:

η(γ̇) = K|γ̇|n−1, n = 0.65.

Convergence measured in the L2-norm confirmed near-
exponential decay of the error under hp-refinement [105].
A representative table from these experiments shows
that going from polynomial order 2 to 4 reduces the
error by almost two orders of magnitude with only a
modest increase in total runtime. This validates the
theoretical premise that spectral rates of convergence can
be achieved for sufficiently smooth solutions, particularly
relevant in transitional or laminar flow regimes typical of
many biological scenarios. [106]

Parallel performance was evaluated on HPC clusters
ranging from 512 to 4096 cores. A matrix-free approach
employing sum-factorization on quadrature points took
advantage of the tensor-product structure of high-order
basis functions, sustaining an 82% parallel efficiency
[107]. The tests included load-imbalanced cases where
adaptivity was triggered in only certain sub-domains [108].
Dynamic load balancing routines, combined with the
hierarchical structure of polynomial enrichments, were
shown to minimize idle processor time. Such scalability
is critical for large-scale simulations of full arterial trees
or extended joint geometries that require resolution of fine
vascular or tissue structures over anatomically extensive
domains. [109]

These validation cases underscore the strengths of the
proposed hp-adaptive HO-FEM framework in capturing
localized phenomena such as boundary-layer shear gra-
dients and viscoelastic stress concentrations without re-
quiring globally refined meshes. The synergy of advanced
stabilization, adaptive strategies, and matrix-free parallel
implementations collectively enables robust, high-fidelity
simulations at relatively high Reynolds, Deborah, or Weis-
senberg numbers, making this method suitable for a broad

range of clinical and industrial applications involving non-
Newtonian fluids. [110]

Conclusion
This work establishes high-order finite element methods
as a compelling paradigm for accurately and efficiently
simulating non-Newtonian biofluid flows in physiologically
realistic geometries. The hp-adaptive approach described
herein leverages hierarchical polynomial basis functions
and robust stabilization techniquesmost notably SUPG
and log-conformation methodsto address long-standing
challenges associated with shear-thinning, viscoelastic,
and pulsatile flows [111]. By carefully integrating local
refinement indicators with a posteriori error estimation,
the method allocates degrees of freedom precisely where
complex rheological or geometric features demand higher
resolution, obviating the need for uniformly fine meshes.

A key insight from our numerical experiments on cere-
bral aneurysm hemodynamics and synovial fluid dynam-
ics is that higher-order polynomial approximations offer
substantial gains in capturing local boundary layer phe-
nomena, vortex structures, and steep velocity or stress
gradients compared to traditional low-order finite volume
or finite element methods [112]. Specifically, for a given
target accuracy, one can realize reductions of fivefold or
more in the total number of degrees of freedom, simulta-
neously decreasing memory overhead and computational
runtime. Stabilization methods, including SUPG modi-
fications and the log-conformation formulation, are vital
to avoid spurious oscillations or exponential instabilities,
particularly in flows dominated by viscoelastic memory ef-
fects. [113]

Furthermore, the demonstration of strong scalability to
thousands of processor cores highlights that matrix-free
operator evaluations, combined with carefully designed
preconditioners for the saddle-point system, can ren-
der high-order methods practical for large-scale patient-
specific simulations. In this context, advanced HPC re-
sources and distributed memory parallelization comple-
ment the theoretical benefits of polynomial-based dis-
cretizations, offering a clear pathway to clinically rele-
vant computations that demand both precision and turn-
around speed. [114]

Nonetheless, open challenges remain. Extending the
present framework to fully coupled fluid-structure inter-
action problems or multi-phase flows involving particulate
matter, such as suspended platelets or red blood cells,
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requires additional research in modeling and numerical
design [115]. Further, GPU-accelerated computing ar-
chitectures demand tailored approaches to handle high-
order kernels efficiently. Clinical translation also hinges on
automated workflows that robustly generate high-quality
curved meshes from medical images, apply boundary con-
ditions from in vivo measurements, and post-process pre-
dictive metrics such as wall shear stress or residence time
for medical decision-making. [116]

This study provides both theoretical and computational
evidence that high-order finite elements, equipped with
hp-adaptivity and robust stabilization, offer a superior
combination of accuracy, stability, and efficiency for an
important class of non-Newtonian biofluid problems. By
elucidating the interplay of polynomial order, rheologi-
cal model selection, and solver performance, it lays a
foundation for more widespread adoption of these tech-
niques in academic, industrial, and clinical research set-
tings, with promising directions for future innovation in
multi-scale, multi-physics modeling of complex biological
systems [117].
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