
Open Journal of Robotics, Autonomous Decision-Making, and Human-Machine Interaction, pp. 1–11
The content is licensed under a Creative Commons Attribution 4.0 International License. This license permits unrestricted use,

distribution, and reproduction in any medium, provided the original author and source are credited. For more details, visit
https://creativecommons.org/licenses/by/4.0/.

Real-time Machine Learning Pipelines for Big
Data in Cloud Environments: Implementing
Streaming Algorithms on Apache Kafka
Ahsan Raza1

1. University of Malakand, Department of Computer Science, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan.

Abstract
Real-time machine learning pipelines in large-scale cloud en-
vironments demand robust streaming capabilities that han-
dle massive volumes of continuously generated data. Im-
plementing such pipelines involves designing data ingestion
mechanisms with low latency, ensuring fault tolerance across
distributed nodes, and balancing computational overhead to
maintain near-instantaneous processing. This work explores
the architecture and implementation of real-time machine
learning pipelines on platforms that utilize streaming frame-
works for ingesting and routing data, with a particular focus on
Apache Kafka as a core messaging backbone. The approach
encompasses techniques for model updates, online training
procedures, and high-throughput inference, where each com-
ponent interacts seamlessly within a highly scalable infrastruc-
ture. The discussion addresses methods for ensuring consis-
tent and accurate data flow, together with stream partitioning
strategies that minimize load imbalance. The emphasis is on
constructing efficient pipelines by deploying advanced methods
for compressing model parameters, optimizing queue buffers,
and orchestrating dynamic resource allocation. Mathematical
modeling is presented to capture the stochastic behavior of
data arrival processes and to formalize the performance met-
rics governing throughput, latency, and reliability. Implemen-
tation aspects reveal how fault tolerance is achieved through
replication mechanisms and leader election, while the theo-
retical underpinnings highlight the advantages of incremental
updates and approximate computations to reduce overhead.
Ultimately, this research provides a cohesive foundation for
real-time machine learning workflows on modern cloud sys-
tems.

Introduction
The growing reliance on continuous data generation from
diverse sensors, applications, and networked devices has

escalated the need for real-time analytics in distributed
environments [1]. The merging of big data and the imper-
atives of immediate insights has led to the integration of
streaming technologies with sophisticated machine learn-
ing models. The paradigm centers on ingesting vast data
streams with minimal delay and adapting predictive mod-
els in a manner that aligns with fluctuations in the un-
derlying data distribution. This shift to continuous pro-
cessing necessitates robust frameworks that can address
the challenges of load balancing, fault tolerance, perfor-
mance bottlenecks, and the intricacies of implementing
online learning techniques. [2]

The foundation of real-time machine learning pipelines
in cloud environments emerges from the interplay of vir-
tualized infrastructure, distributed storage, and advanced
messaging systems. One of the critical challenges is the
concurrency management across the different nodes re-
sponsible for data ingestion, preprocessing, feature ex-
traction, model training, and inference. Data streaming
systems must ensure data integrity, maintain sequential
order where relevant, and handle a substantial rate of in-
coming records [3]. The task involves not merely captur-
ing the data but also orchestrating its flow so that each
transformation and learning task remains scalable.

A significant driver for adopting streaming solutions is
the pervasive requirement for low latency in applications
such as fraud detection, recommendation engines, user
behavior analysis, and network anomaly detection. The
continuous reevaluation of model parameters based on
incoming data fosters agility, but it also raises questions
about how to handle model staleness, concept drift,
and distributed synchronization. The computational
overhead grows as the pipeline expands, since each
module may need to operate on partial subsets of
data or maintain specialized memory structures for

© 2023 Author(s). This is an open access article licensed under the Creative Commons Attribution License 4.0.
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

OPENSCIS: , 8, 1–11, 2023

efficient updates [4]. Ensuring these modules coordinate
effectively in a dynamic environment calls for advanced
cluster management strategies and messaging solutions
that can buffer, queue, and route data in near real time.

Another pressing concern is how to properly incorporate
fault tolerance and recovery mechanisms into the design.
In a cloud environment with volatile resource availability
and failures at both the network and node levels,
the pipeline must remain resilient and automatically
recover [5]. This situation is typically addressed through
replication, snapshotting of system states, transactional
guarantees, and leader election protocols in messaging
layers. Such procedures must execute without introducing
prohibitive overhead or latency spikes. Ensuring that
the pipeline does not lose data segments or corrupt
model parameters is essential for maintaining accuracy
and continuity in predictive performance. [6]

Achieving high throughput depends on implementing
strategies for parallelization and partitioning of the
data. However, partitioning must be accomplished
judiciously to avoid excessive skew in the distribution
of topics or keys, which can result in some nodes
becoming bottlenecks. This challenge requires robust
hashing or partition assignment logic, along with dynamic
load balancing mechanisms capable of shifting partitions
among brokers to adapt to varying workload conditions.
The same adaptive principles extend to autoscaling
of compute instances, particularly for online learning
components that demand specialized processing power at
peak times. [7]

The interplay between model design and streaming
infrastructure is a vital aspect of building these pipelines.
Models that support incremental or mini-batch updates
are favored in streaming scenarios because they seamlessly
integrate with the flow of arriving data. Conversely,
batch-oriented models require chunked reprocessing of
data subsets, which may introduce lag and potentially
undermine the overall real-time objective [8]. The
design also considers approximate algorithms that provide
rapid estimations and can handle the inherently noisy
environment of streaming data. These algorithms must
be carefully analyzed to guarantee acceptable error
bounds while preserving speed.

The remainder of this work examines the architecture
of a real-time machine learning pipeline in a cloud set-
ting, with a particular focus on Apache Kafka for handling
high-throughput data streams. The discussion introduces
advanced mathematical concepts to capture the behav-
ior of streaming algorithms, building on the fundamentals
of large-scale distributed systems [9]. Attention is given
to strategies for partition management, synchronization,
incremental updates, and the role of probabilistic data
structures. Implementation details reveal how to integrate
streaming ingestion with cloud-native deployment prac-
tices, while advanced mechanisms for replication and state
management ensure reliability. Collectively, these compo-

nents form a cohesive solution that addresses the chal-
lenges inherent in streaming machine learning pipelines at
scale. [10]

System Architecture and Dataflow
The creation of a comprehensive pipeline for real-time
machine learning in the cloud begins with a well-structured
system architecture that streamlines dataflow. The
architecture often includes a data producer layer, a
messaging and ingestion layer, and multiple downstream
consumers that handle feature extraction, model training,
and prediction. The message broker sits at the heart of
this pipeline, distributing data among multiple consumers
and ensuring consistent load distribution. [11], [12]

The initial stage involves producers, which might
include IoT sensors, transactional systems, or monitoring
tools that continuously generate data in structured or
unstructured formats. These producers push messages
containing raw data to topics in a high-performance
messaging system. A critical design goal is to minimize
the overhead for producers by leveraging efficient data
serialization and ensuring that publish operations to the
messaging system remain asynchronous, with minimal
blocking. This approach allows producers to sustain high
throughput while delivering messages to the broker. [13]

At the messaging and ingestion layer, Apache Kafka
exemplifies a solution that persists messages in a fault-
tolerant manner through replication across a cluster of
brokers. The incoming streams are divided into partitions,
each of which can be handled by a different broker. The
selection of partition keys can influence the distribution
of data and thereby impact load balancing [14], [15].
The data, once stored, can be pulled or streamed by
consumers that execute different tasks in the pipeline.
This separation of producer and consumer roles, combined
with efficient disk-based persistence, yields a robust
queueing mechanism that can buffer massive volumes of
data with low overhead.

Downstream consumers include modules for feature ex-
traction, transformation, and eventually model training
and inference. Each consumer can be scaled indepen-
dently according to its computational needs [16]. The
asynchronous nature of consumption allows for variable
processing times, ensuring that stragglers do not stall the
entire pipeline. In scenarios where real-time feedback is
crucial, a low-latency path can be established for priority
data, or specific partitions can be reserved for expedited
processing.

Dataflow within this pipeline hinges on distributing
tasks logically among multiple computing nodes [17]. To
handle high throughput, the system can be configured
such that different partitions of the same Kafka topic
feed separate consumer instances in parallel. This
design requires careful synchronization mechanisms and
offset management to ensure the stateful nature of the
learning algorithms remains consistent. Failure recovery

2

OPENSCIS: , 8, 1–11, 2023

must be transparent, and new consumer instances or
brokers should be able to resume operations without
losing intermediate states or duplicating processing on
messages. [18]

The pipeline also requires a separate channel for sending
updated model parameters back into the system. One
approach involves producing updated model snapshots to
a dedicated topic, which the inference nodes consume.
Alternatively, a shared in-memory data store can be used
for extremely low-latency deployments. In either case, the
system must ensure coherence between the current data
being processed and the model version [19]. Overlapping
transitions between old and new model versions may be
unavoidable, so the architecture should support a gradual
switchover to prevent abrupt shifts in predictions.

In large deployments, distributed file systems and key-
value stores can serve as persistent storage for model
checkpoints, feature embeddings, or aggregated state.
By persisting these artifacts, the system can maintain
historical context, revert to stable checkpoints in case
of anomalies, and facilitate offline batch processing if
necessary [20]. However, since the emphasis is on real-
time performance, the pipeline must strike a balance
between storing sufficient historical data and minimizing
the overhead of persistent I/O.

The interaction with external services, such as dash-
boards or alerting systems, can be managed through ad-
ditional topics that relay processed data or predictions
to front-end applications. This integration ensures that
insights derived from continuous data analysis are prop-
agated to the end-users or other systems in real time.
Because the pipeline is designed for large-scale scenar-
ios, attention must be paid to message formats and data
schemas to ensure forward and backward compatibility,
thus allowing components to evolve without incurring ver-
sion mismatches. [21]

The dataflow described here encapsulates a broad spec-
trum of moving parts, each essential for a robust real-time
machine learning solution. Each partition, consumer, pro-
ducer, and storage system must be orchestrated to work
together seamlessly under fluctuating workloads. The
subsequent sections delve into the mathematical under-
pinnings of streaming algorithms, the detailed implemen-
tation steps for the Kafka-based ingestion pipeline, the
strategies to mitigate latency and scaling challenges, and
the optimization techniques that enable advanced func-
tionality in production settings. [22]

Mathematical Foundations of Streaming Algorithms
A comprehensive understanding of streaming algorithms
underpins the effective operation of real-time machine
learning pipelines. The perpetual flow of data demands
methods that can keep pace with high ingestion rates
while updating model parameters incrementally [23]. The
constraints of memory, processing time, and the potential
for concept drift necessitate mathematical formulations

that are both efficient and robust. [24]
The streaming problem can be conceptualized within a

probabilistic framework where data arrives as a sequence
of observations x1, x2, . . . , xt , potentially from an evolving
distribution. A real-time learning system must approx-
imate certain functions of this data, such as frequency
moments, correlation structures, or classification bound-
aries, within stringent resource limits. One fundamental
concept in this area is the notion of sketches, which are
compact data structures that retain partial information
about a data stream. A popular type of sketch is based
on hashing, where each incoming data point is mapped
to a hash bucket and used to update counters or other
accumulators. [25]

To formalize this, consider a frequency estimation
scenario where n distinct items appear in a stream of
length L. We seek an approximation of the count ci for
each item i such that

max
i
|ĉi − ci | ≤ εL

with high probability, where ĉi is the estimate provided
by the streaming algorithm. One approach leverages
a count-min sketch, which uses d hash functions each
mapping an item to one of w buckets, resulting in a
table of size d × w [26], [27]. For an incoming item
i , the algorithm updates one counter in each row based
on the corresponding hash function. The estimate of the
count is given by the minimum among the d counters for
item i . Under appropriate parameterizations, this sketch
achieves an error bound of εL with probability 1−δ, where
δ depends on the choice of d and w .

Another class of algorithms addresses the requirement
of dimensionality reduction for feature spaces [28]. Tech-
niques such as random projection or matrix factorization
can be adapted into a streaming setting. Suppose there
is a large-scale data vector xt ∈ Rd arriving at time t.
A streaming approach may maintain a matrix M of size
k × d (with k ≪ d) that is updated incrementally to cap-
ture the principal components of the data distribution.
One incremental procedure involves performing a rank-k
approximation at each step: [29]

Mt+1 = Mt + αt f (xt ,Mt),

where αt is a learning rate, and f (·) is a function that
computes the adjusted gradient or residual based on the
new data vector. Over time, this matrix converges to
a basis that preserves most of the variance of the high-
dimensional data. The memory usage is contained to the
size of M, and each update can be computed in O(kd)
time, which is often feasible for moderate k . [30]

For classification or regression in streaming con-
texts, one frequently encounters the online optimization
paradigm. Suppose the model is represented by parame-
ters θ. At time t, the algorithm observes (xt , yt), where
yt might be a label or a continuous target. The online

3

OPENSCIS: , 8, 1–11, 2023

update follows a rule such as: [31]

θt+1 = θt − ηt∇ℓ(θt ; xt , yt),

where ℓ is a loss function and ηt is the step size.
This stochastic gradient descent approach ensures that
memory usage is proportional to the parameter space,
rather than the entire dataset. Convergence analyses
typically rely on martingale properties of the gradient
updates, and they often come with bounds that relate
the regret over the data stream to the model’s capacity
and the smoothness of ℓ. [32]

In many real-time pipelines, concept drift occurs when
the underlying distribution shifts over time, leading
to outdated model parameters if the updates are not
sufficiently responsive. One mathematical strategy for
handling drift is to introduce a forgetting factor λ ∈ (0, 1)
in the updates:

θt+1 = λθt − ηt∇ℓ(θt ; xt , yt).

This factor gradually diminishes the impact of older data,
allowing the model to focus on recent observations [33].
An alternative technique is to use sliding windows, where
older samples are discarded after a fixed period, though
this can introduce discontinuities.

Probabilistic data structures and approximation tech-
niques often play a central role in these pipelines, help-
ing manage large-scale computations with minimal over-
head. For instance, a Bloom filter can be employed to
detect the presence or absence of items in a stream with
a known probability of false positives. This approach can
be integrated into data cleansing pipelines, allowing real-
time machine learning modules to skip repeated checks on
whether incoming data has already been processed. [34]

The interplay of these mathematical tools forms the
backbone of efficient streaming pipelines. Each technique
must be carefully tuned to the volume and velocity of
data, the desired accuracy, and the system’s computa-
tional constraints. Subsequent sections will detail how
these foundations integrate with the practicalities of im-
plementing real-time data ingestion and model updat-
ing on messaging systems like Apache Kafka, as well as
how latency and resource allocation challenges can be ad-
dressed through cloud-native architectures.

Implementation Aspects in Apache Kafka
The practical implementation of real-time machine learn-
ing pipelines often leverages Apache Kafka as a key mes-
saging backbone. Its distributed, fault-tolerant architec-
ture, combined with robust handling of high-throughput
data streams, makes it suitable for large-scale solutions
in the cloud. Configuring Kafka properly and integrating
it with upstream producers and downstream consumers
pose several unique considerations tied to performance,
reliability, and ease of management.

Kafka clusters typically consist of multiple brokers, each
responsible for storing and serving partitions of various

topics [35]. Each topic partition is replicated across
brokers to achieve fault tolerance. If the leader for a
partition fails, one of the replicas is elected as the new
leader with minimal downtime. This resilience is crucial
for ensuring that real-time pipelines do not lose data
during transient failures, although it introduces overhead
related to replication and synchronization [36]. Tuning
the replication factor, in-sync replica criteria, and leader
election timeouts helps strike a balance between reliability
and efficiency.

Producers connect to one or more brokers, dispatching
data to specific topics and partitions based on configura-
tion or hashing logic. In many implementations, the par-
tition assignment function is deterministic to ensure that
messages with the same key land in the same partition,
facilitating stateful processing [37]. For machine learn-
ing tasks requiring partition-specific updates, this can be
leveraged to maintain partial aggregates or parameters
associated with particular keys. Producer optimizations
include controlling the batch size, compression algorithm,
and acknowledgement settings to minimize network over-
head and ensure timely delivery. The latency-throughput
trade-off is managed by adjusting how aggressively pro-
ducers wait for broker confirmations before sending new
messages.

Consumers, often running within streaming frame-
works, subscribe to topics and pull messages in batches
[38]. Each consumer group tracks offsets to mark how
far it has progressed in reading from each partition. Fail-
ure of a consumer instance triggers a rebalancing event,
during which remaining instances redistribute partition as-
signments. This process must occur seamlessly so that
data processing resumes without duplication or missed
records [39]. The overhead of rebalancing can become
pronounced if the pipeline experiences frequent instance
restarts. Proper group management and partition assign-
ment strategies help mitigate disruptions. To maintain
stateful machine learning logic, each consumer instance
may keep local caches or partial model parameters that
relate to the data in its assigned partitions.

Integration with a streaming processing layer adds
further complexity [40]. This layer can be a standalone
application or embedded in frameworks that automatically
handle partition assignments, checkpointing, and state
management. The stateful stream processing modules
often rely on replicated stores to track intermediate
aggregates, making it essential to ensure these stores
scale in tandem with the overall data volume. Custom
state stores can be designed to hold partial gradients,
computed features, or model updates [41]. The frequency
and manner of checkpointing this state can have a
significant impact on performance and data correctness.

A high-performance design also involves optimizing
cluster-wide settings such as the number of partitions
per topic. While increasing the number of partitions
can improve parallelism, it also heightens overhead during

4

OPENSCIS: , 8, 1–11, 2023

rebalances and metadata propagation [42]. Balancing
these factors requires empirical testing under anticipated
workload conditions. The trade-off between consumer lag
(how far behind the head of the stream each consumer
is) and resource usage is often monitored closely. If
consumers fall too far behind, the entire pipeline becomes
less real time.

Securing data in transit and at rest is another impor-
tant aspect [43]. Kafka supports encryption of data over
the wire, requiring certificate management for brokers and
clients. Authentication and authorization mechanisms de-
termine which producers and consumers can write to or
read from specific topics. In a multi-tenant environment,
these controls ensure isolation of data and compliance
with regulatory requirements [44]. Nonetheless, cryp-
tographic operations introduce computational overhead,
which must be factored into the design of a low-latency
machine learning pipeline.

On the cloud infrastructure side, deploying Kafka
on managed services or using container orchestration
platforms requires an additional layer of configuration
management. Automatic scaling policies, environment
variable injection for partition counts, and dynamic
configuration of brokers can simplify the process, but also
introduce more moving parts that may affect stability
if not carefully orchestrated. Network latency between
brokers and consumers can fluctuate in certain cloud
regions, impacting throughput [45]. Reducing cross-
region traffic or placing critical services in proximity to
the Kafka cluster is one way to mitigate this issue.

The final objective is to produce a reliable and flexible
messaging layer that seamlessly integrates with both data
producers and consumers engaged in complex machine
learning tasks. Kafka’s distributed design and partition-
based architecture provide a robust substrate for real-
time analytics, though it requires thorough understanding
of configuration, tuning, and operational best practices
[46]. The pipeline’s responsiveness to dynamic loads
relies on the synergy between these configurations and
the mathematical principles discussed earlier. In the
next section, the focus shifts to examining how to
mitigate latency and maintain scalability when faced with
unpredictable workloads and diverse data streams.

Handling Latency and Scalability Challenges
Real-time pipelines in cloud environments must address la-
tency constraints while concurrently scaling to accommo-
date unpredictable surges in data volume [47], [48]. The
intricacies of distributed systems exacerbate this task,
since network partitions, hardware failures, and load im-
balances can degrade performance. Analyzing and mit-
igating these effects involves leveraging queueing theory
and control strategies to maintain stable system behavior
under varying conditions.

A key performance metric is the end-to-end latency
between data production and the time at which a

machine learning prediction or decision is available for
consumption. This latency is governed by several factors,
including network delays, message serialization overhead,
and the time required for data processing [49]. In
mathematical terms, consider a pipeline as a sequence of
stages S1, S2, . . . , Sm. Each stage Si can be modeled with
a service rate µi and an arrival rate λi . Under conditions
of steady-state flow, one seeks [50]

λi < µi for all i ,

to ensure the queue for each stage remains stable.
If λi approaches µi , backlogs form and latency grows
exponentially. Thus, thorough capacity planning and
architectural design are essential to guarantee each stage
can handle the incoming rate.

Load balancing strategies often center on partitioning
data such that each processing node receives approxi-
mately equal volumes [51]. This approach entails hash-
ing on keys or round-robin partition assignments. Non-
uniform key distributions can cause skew, overwhelming a
subset of partitions. A solution is to apply dynamic rebal-
ancing or leveraged partition expansion at runtime [52].
In such a scenario, new partitions can be introduced, and
existing data is gradually reallocated. The overhead of
rebalancing is not negligible, but if done predictively be-
fore high loads reach critical thresholds, it can mitigate
latencies effectively.

When analyzing consumer-side processing, one can
utilize concurrency [53]. If each consumer instance
processes messages in parallel threads, it may reduce
processing times per message, although concurrency
introduces synchronization overhead. A theoretical
assessment can be performed by modeling each consumer
instance as having multiple servers, each with its own
service rate. The relationship between concurrency level,
system utilization, and latency can be examined by
extending single-server queueing models to multi-server
settings. Fine-tuning concurrency to ensure that the
throughput matches or slightly exceeds the arrival rate
yields stable performance without excessive overhead.
[54]

In addition to balancing load across consumers, the
pipeline must handle potential bottlenecks in data flow.
For example, if a certain feature extraction module
requires more computation than others, it can degrade
overall throughput. Methods such as micro-batching,
incremental checkpointing, and distributed caching of
intermediate results can alleviate these issues [55], [56].
However, each technique trades off memory usage,
processing latency, and fault tolerance guarantees.

Scalability in a cloud environment is frequently tied to
autoscaling policies. The pipeline can be monitored by
collecting metrics on resource usage, consumer lag, and
system throughput [57]. Automated rules can trigger
the provisioning or deprovisioning of instances to match
current loads. This elasticity is one of the advantages

5

OPENSCIS: , 8, 1–11, 2023

of operating in a virtualized cloud environment, yet it
must be carefully tuned. Overly aggressive scaling can
lead to oscillations, in which nodes are repeatedly added
and removed. A stable policy will often incorporate buffer
thresholds and smoothing mechanisms to avoid quick
changes in capacity when short-term bursts occur. [58]

Cloud networking introduces further nuances. The
latency between a Kafka broker and a consumer can
vary if they are placed in different availability zones or
regions. The pipeline must be architected to minimize
cross-region traffic or to replicate data regionally if
latency-sensitive tasks must remain close to producers
[59]. Additional concerns include ephemeral IP addresses,
container restarts, and the need to maintain service
discovery entries. Balancing these factors is crucial
for ensuring that partition leadership remains collocated
with appropriate consumers where possible, thus reducing
network hop time.

Another challenge arises from maintaining real-time
model updates alongside streaming data ingestion. When
new parameters for an online model are published, there is
a synchronization event that updates the inference nodes
[60]. If updates occur very frequently, one can observe
short bursts of increased latency while model refreshes
propagate. One technique to mitigate this issue is to
apply asynchronous updates, whereby inference nodes
fetch the newest parameters at a controlled interval. In
a more advanced scenario, a multi-version concurrency
approach is employed, where different consumers may
temporarily use different model versions until all are in
sync [61]. This approach ensures that inference does not
stall for parameter updates.

Understanding latency and scalability from a theoretical
perspective informs practical solutions. The interplay of
queueing models, concurrency strategies, network topol-
ogy, and dynamic resource management offers multiple
avenues for performance optimization [62]. The next sec-
tion discusses advanced optimization strategies, integrat-
ing approximate algorithms, optimized data structures,
and additional orchestration approaches to further refine
the pipeline’s operation for demanding production envi-
ronments.

Advanced Optimization Strategies
Achieving high performance at scale necessitates a range
of optimization strategies that address both algorithmic
and infrastructural concerns. These strategies often in-
volve approximate computations, specialized data struc-
tures, and refined orchestration mechanisms. The meth-
ods introduced here deepen the discussion of how real-
time pipelines can be tuned to reach operational excel-
lence in large-scale cloud deployments. [63]

Approximate algorithms can dramatically reduce com-
putation times and memory overhead. In high-frequency
data streams, it may be acceptable to introduce a small,
probabilistic error if it significantly reduces resource con-

sumption. Sketch-based algorithms serve this purpose
in estimating frequency moments, set intersections, or
quantiles [64]. This computational model implies a trade-
off between accuracy and computational resource us-
age. When deploying these in production, a sophisti-
cated balancing technique ensures that the error bounds
remain within acceptable limits for the downstream ma-
chine learning tasks. Calibration experiments can char-
acterize the relationship between approximation level and
downstream model performance.

Model compression is another optimization strategy
that facilitates real-time inference, especially when deal-
ing with deep learning or large ensembles [65]. Techniques
such as low-rank factorization, weight pruning, or quanti-
zation convert a large, high-precision model into a com-
pact version that is faster to load, evaluate, and update.
Although these compressed models introduce some level
of approximation, they often retain most predictive power
if the compression is executed judiciously. In a stream-
ing context, an incremental approach to model compres-
sion can be employed, where parts of the model are com-
pressed over time without halting real-time processing.
[66]

Memory optimization in streaming systems relies heav-
ily on data structures tailored to handle large volumes.
Caches for partial results, intermediate feature represen-
tations, or parameter segments can be stored in special-
ized memory regions using lock-free data structures. By
eliminating locking, concurrency overhead is reduced [67].
However, one must remain vigilant about concurrency
hazards such as lost updates. Additional concurrency con-
trol methods like versioning or advanced compare-and-
swap operations might be integrated to ensure consistent
updates with minimal blocking.

Resource allocation strategies become more nuanced
in the context of advanced optimization. Instead of
statically allocating the same resources for each partition
or consumer, the pipeline can dynamically assign more
powerful compute nodes to topics exhibiting higher load
[68]. If a particular partition corresponds to a high-
traffic region of the data, scheduling it on a more
capable server ensures latency remains within acceptable
bounds. Conversely, lower-load partitions might share a
single machine. This dynamic provisioning is orchestrated
through cluster managers that monitor metrics and
automatically redeploy Kafka brokers, consumers, or
associated services. [69]

Scheduling and resource arbitration extend beyond
simple CPU or memory considerations. In some cases,
hardware acceleration via GPUs or specialized inference
accelerators can be introduced. The data pipeline might
route certain partitions or specific model processing tasks
to nodes equipped with accelerators, significantly reducing
inference times. To enable effective scheduling, an
analysis that accounts for the overhead of data transfer to
and from these accelerators is necessary [70]. Balancing

6

OPENSCIS: , 8, 1–11, 2023

the gains in computation speed with potential increases
in I/O latency ensures the pipeline remains efficient.

Model updates can also be optimized by employing a
distributed parameter server. In this paradigm, model
parameters are sharded across multiple nodes [71]. Each
consumer or trainer node fetches and updates its relevant
partition of parameters. The incremental updates can
be aggregated in an asynchronous manner, reducing the
need for global synchronization. The average or a more
sophisticated merge function across parameter shards
leads to a globally updated model state [72]–[74]. The
mathematics behind these merges may involve consensus
algorithms that ensure consistency even when partial
updates fail or arrive out of order.

Increasingly, reinforcement learning based approaches
to scheduling and resource management are appearing
in real-time pipelines [75]. A streaming system might
treat each partition assignment or machine scheduling
decision as an action and measure latency or throughput
as a reward. Over time, the system adjusts its strategy
to maximize overall performance [74]. Although training
a reinforcement learning model in a live production
environment introduces complexities, it may discover non-
trivial scheduling policies that outperform hand-tuned
heuristics.

The final aspect of advanced optimization involves
continuous monitoring and adaptation. Observability in
real-time pipelines relies on detailed instrumentation for
each component [76]. Metrics on throughput, consumer
lag, model accuracy, error rates, memory consumption,
and network latency feed into a centralized analytics
system. If anomalies are detected, corrective measures
can be automatically triggered, such as reassigning
partitions, spinning up additional processing nodes, or
adjusting model parameters. Over time, historical
performance data can guide strategic improvements in the
pipeline architecture.

These advanced optimization strategies underscore the
complexity of running real-time machine learning pipelines
at scale [77]. The interplay of approximate algorithms,
resource management, compressed models, and dynamic
scheduling fosters a highly adaptive system. The next
section concludes this examination by summarizing key
insights and outlining directions for further exploration in
the realm of real-time streaming analytics and machine
learning in cloud environments.

Conclusion
Real-time machine learning pipelines for big data in
cloud environments involve intricate interactions among
data ingestion, online model updates, scalable messaging
infrastructures, and advanced streaming algorithms [78].
Central to these pipelines is the capacity to handle
vast volumes of continuously arriving data with minimal
latency, ensuring that insights and predictions remain
relevant in rapidly changing contexts. The reliance on

frameworks like Apache Kafka, which provide durable and
high-throughput message brokers, enables partition-based
distribution, fault tolerance, and dynamic elasticity that
align well with the demands of cloud-scale operations.

The mathematical foundations of streaming algorithms
offer principled approaches to incremental learning, ap-
proximate data structures, and probabilistic methods [79].
These techniques collectively address challenges such as
concept drift, limited memory, and the need to maintain
real-time responsiveness. When integrated with Kafka-
based ingestion pipelines, they allow for efficient updates
of model parameters and controlled error bounds on esti-
mates, fostering robust analytics in complex, distributed
settings. Achieving low latency requires close attention to
load balancing, concurrency, and partition management,
often guided by queueing theory and advanced strategies
for autoscaling. The resilience against hardware and net-
work failures is preserved through replication, coordina-
tion protocols, and snapshot-based recovery, keeping the
pipeline reliable under diverse operational conditions.

Optimization strategies go further by incorporating ap-
proximate computations, compressed models, specialized
memory structures, and dynamic resource orchestration.
By carefully calibrating these elements, a pipeline can
accommodate steep surges in traffic without sacrificing
accuracy or throughput. The synergy of real-time data
streams, online optimization, and cloud-native deploy-
ments unlocks innovative opportunities for applications
requiring immediate insight [80]. Modern reinforcement
learning-based scheduling may further refine resource allo-
cation, offering a glimpse of automated, adaptive pipelines
that can respond intelligently to changing workloads and
error distributions.

Real-time machine learning in large-scale cloud environ-
ments continues to evolve. Future directions may empha-
size deeper integration with specialized hardware acceler-
ators, more sophisticated multi-region replication for truly
global streaming, and refined algorithms that unify batch
and streaming paradigms in hybrid workflows. Nonethe-
less, the principles explored here—system architecture,
robust mathematical foundations, optimized implementa-
tion details, and comprehensive optimization—provide a
cohesive framework for designing, deploying, and operat-
ing real-time machine learning pipelines that can scale to
meet emerging demands in data-driven applications. [81]

Conflict of interest
Authors state no conflict of interest.

References
[1] P. Avesani, B. McPherson, S. Hayashi, et al., “The

open diffusion data derivatives, brain data upcycling
via integrated publishing of derivatives and reproducible
open cloud services,” Scientific data, vol. 6, no. 1,
pp. 69–69, May 23, 2019. DOI: 10.1038/s41597-019-
0073-y.

7

https://doi.org/10.1038/s41597-019-0073-y
https://doi.org/10.1038/s41597-019-0073-y

OPENSCIS: , 8, 1–11, 2023

[2] L. Ding, “Multimodal transport information sharing
platform with mixed time window constraints based on
big data,” Journal of Cloud Computing, vol. 9, no. 1,
pp. 1–11, Feb. 7, 2020. DOI: 10.1186/s13677- 020-
0153-8.

[3] J. Liu and Y. Chen, “Segmented in-advance data ana-
lytics for fast scientific discovery,” IEEE Transactions on
Cloud Computing, vol. 8, no. 2, pp. 432–442, Apr. 1,
2020. DOI: 10.1109/tcc.2016.2541142.

[4] C. Hogendorn and B. M. Frischmann, “Infrastructure
and general purpose technologies: A technology flow
framework,” European Journal of Law and Economics,
vol. 50, no. 3, pp. 469–488, Feb. 18, 2020. DOI: 10.
1007/s10657-020-09642-w.

[5] I. Fajjari, F. A. Tobagi, and Y. Takahashi, “Cloud edge
computing in the iot,” Annals of Telecommunications,
vol. 73, no. 7, pp. 413–414, Aug. 3, 2018. DOI: 10.
1007/s12243-018-0651-6.

[6] M. Kotliar, A. V. Kartashov, and A. Barski, “Cwl-airflow:
A lightweight pipeline manager supporting common
workflow language.,” GigaScience, vol. 8, no. 7, Jul. 1,
2019. DOI: 10.1093/gigascience/giz084.

[7] H. Malik and E. M. Shakshuki, “Performance evaluation
of counter selection techniques to detect discontinuity
in large-scale-systems,” Journal of Ambient Intelligence
and Humanized Computing, vol. 9, no. 1, pp. 43–59,
Jul. 4, 2017. DOI: 10.1007/s12652-017-0525-1.

[8] A. P. Carrieri, W. P. M. Rowe, M. Winn, and E. O.
Pyzer-Knapp, “Aaai - a fast machine learning workflow
for rapid phenotype prediction from whole shotgun
metagenomes,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, pp. 9434–9439,
Jul. 17, 2019. DOI: 10.1609/aaai.v33i01.33019434.

[9] M. M. Babu, M. Rahman, A. Alam, and B. L.
Dey, “Exploring big data-driven innovation in the
manufacturing sector: Evidence from uk firms.,” Annals
of operations research, vol. 333, no. 2-3, pp. 1–28,
Apr. 21, 2021. DOI: 10.1007/s10479-021-04077-1.

[10] S. Joshi, S. Mittal, P. H. Holloway, P. R. Shukla, B. Ó.
Gallachóir, and J. Glynn, “High resolution global spa-
tiotemporal assessment of rooftop solar photovoltaics
potential for renewable electricity generation.,” Nature
communications, vol. 12, no. 1, pp. 1–15, Oct. 5, 2021.
DOI: 10.1038/s41467-021-25720-2.

[11] J. Woo and M. Mishra, “Predicting the ratings of
amazon products using big data,” WIREs Data Mining
and Knowledge Discovery, vol. 11, no. 3, Dec. 12, 2020.
DOI: 10.1002/widm.1400.

[12] R. Avula, “Overcoming data silos in healthcare with
strategies for enhancing integration and interoperability
to improve clinical and operational efficiency,” Journal of
Advanced Analytics in Healthcare Management, vol. 4,
no. 10, pp. 26–44, 2020.

[13] M. Ryan, J. Antoniou, L. Brooks, T. Jiya, K. Macnish,
and B. C. Stahl, “Research and practice of ai ethics:
A case study approach juxtaposing academic discourse
with organisational reality,” Science and engineering
ethics, vol. 27, no. 2, pp. 16–16, Mar. 8, 2021. DOI:
10.1007/s11948-021-00293-x.

[14] Z. Yang, W. Wang, Y. Huang, and X. Li, “A multi-
grained log auditing scheme for cloud data confidential-
ity,” Mobile Networks and Applications, vol. 26, no. 2,
pp. 842–850, Aug. 14, 2019. DOI: 10.1007/s11036-
019-01328-1.

[15] S. Shekhar, “An in-depth analysis of intelligent data
migration strategies from oracle relational databases
to hadoop ecosystems: Opportunities and challenges,”
International Journal of Applied Machine Learning and
Computational Intelligence, vol. 10, no. 2, pp. 1–24,
2020.

[16] D. S. W. Ting, D. V. Gunasekeran, L. Wickham, and
T. Y. Wong, “Next generation telemedicine platforms
to screen and triage.,” The British journal of ophthal-
mology, vol. 104, no. 3, pp. 299–300, Dec. 3, 2019.
DOI: 10.1136/bjophthalmol-2019-315066.

[17] J. Grandinetti, “Welcome to a new generation of enter-
tainment: Amazon web services and the normalization
of big data analytics and rfid tracking,” Surveillance &
Society, vol. 17, no. 1/2, pp. 169–175, Mar. 31, 2019.
DOI: 10.24908/ss.v17i1/2.12919.

[18] Z. Li, K. Lin, S. Cheng, L. Yu, and J. Qian, “Energy-
efficient and load-aware vm placement in cloud data
centers,” Journal of Grid Computing, vol. 20, no. 4,
Nov. 24, 2022. DOI: 10.1007/s10723-022-09631-0.

[19] Z. Cai, L. Deng, D. Li, X. Yao, and H. Wang,
“Retraction note to: A fcm cluster: Cloud networking
model for intelligent transportation in the city of
macau,” Cluster Computing, vol. 24, no. 1, pp. 587–
587, Feb. 3, 2021. DOI: 10.1007/s10586-021-03250-
2.

[20] C.-O. Truica, E. Apostol, J. Darmont, and I. Assent,
“Textbends: A generic textual data benchmark for
distributed systems,” Information Systems Frontiers,
vol. 23, no. 1, pp. 81–100, Mar. 6, 2020. DOI: 10 .
1007/s10796-020-09999-y.

[21] M. J. Heaton, A. Datta, A. O. Finley, et al., “A case
study competition among methods for analyzing large
spatial data,” Journal of agricultural, biological, and
environmental statistics, vol. 24, no. 3, pp. 398–425,
Dec. 14, 2018. DOI: 10.1007/s13253-018-00348-w.

[22] G. Zu, S. Wei, Y. Yao, H. Liu, H. Liang, and D. Ji,
“Design of online monitoring system for distribution
transformer based on cloud side end collaboration of
internet of things,” International Journal of Wireless
Information Networks, vol. 28, no. 3, pp. 276–286,
Jun. 29, 2021. DOI: 10.1007/s10776-021-00521-y.

[23] R. Avula, “Optimizing data quality in electronic medical
records: Addressing fragmentation, inconsistencies, and
data integrity issues in healthcare,” Journal of Big-Data
Analytics and Cloud Computing, vol. 4, no. 5, pp. 1–25,
2019.

[24] M. Obschonka and D. B. Audretsch, “Artificial intel-
ligence and big data in entrepreneurship: A new era
has begun,” Small Business Economics, vol. 55, no. 3,
pp. 529–539, Jun. 6, 2019. DOI: 10.1007/s11187-019-
00202-4.

8

https://doi.org/10.1186/s13677-020-0153-8
https://doi.org/10.1186/s13677-020-0153-8
https://doi.org/10.1109/tcc.2016.2541142
https://doi.org/10.1007/s10657-020-09642-w
https://doi.org/10.1007/s10657-020-09642-w
https://doi.org/10.1007/s12243-018-0651-6
https://doi.org/10.1007/s12243-018-0651-6
https://doi.org/10.1093/gigascience/giz084
https://doi.org/10.1007/s12652-017-0525-1
https://doi.org/10.1609/aaai.v33i01.33019434
https://doi.org/10.1007/s10479-021-04077-1
https://doi.org/10.1038/s41467-021-25720-2
https://doi.org/10.1002/widm.1400
https://doi.org/10.1007/s11948-021-00293-x
https://doi.org/10.1007/s11036-019-01328-1
https://doi.org/10.1007/s11036-019-01328-1
https://doi.org/10.1136/bjophthalmol-2019-315066
https://doi.org/10.24908/ss.v17i1/2.12919
https://doi.org/10.1007/s10723-022-09631-0
https://doi.org/10.1007/s10586-021-03250-2
https://doi.org/10.1007/s10586-021-03250-2
https://doi.org/10.1007/s10796-020-09999-y
https://doi.org/10.1007/s10796-020-09999-y
https://doi.org/10.1007/s13253-018-00348-w
https://doi.org/10.1007/s10776-021-00521-y
https://doi.org/10.1007/s11187-019-00202-4
https://doi.org/10.1007/s11187-019-00202-4

OPENSCIS: , 8, 1–11, 2023

[25] P. G. Boyd, Y. J. Lee, and B. Smit, “Computational
development of the nanoporous materials genome,”
Nature Reviews Materials, vol. 2, no. 8, pp. 17 037–,
Jul. 4, 2017. DOI: 10.1038/natrevmats.2017.37.

[26] S. Shahzadi, M. Iqbal, T. Dagiuklas, and Z. U. Qayyum,
“Multi-access edge computing: Open issues, challenges
and future perspectives,” Journal of Cloud Computing,
vol. 6, no. 1, pp. 30–, Dec. 21, 2017. DOI: 10.1186/
s13677-017-0097-9.

[27] M. Kansara, “Cloud migration strategies and challenges
in highly regulated and data-intensive industries: A tech-
nical perspective,” International Journal of Applied Ma-
chine Learning and Computational Intelligence, vol. 11,
no. 12, pp. 78–121, 2021.

[28] J. Yan, D. Wu, C. Zhang, H. Wang, and R. Wang,
“Socially aware d2d cooperative communications for
enhancing internet of things application,” EURASIP
Journal on Wireless Communications and Networking,
vol. 2018, no. 1, pp. 1–12, May 25, 2018. DOI: 10 .
1186/s13638-018-1127-0.

[29] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep
learning with class imbalance,” Journal of Big Data,
vol. 6, no. 1, pp. 1–54, Mar. 19, 2019. DOI: 10.1186/
s40537-019-0192-5.

[30] M. Demertzis, S. Merler, and G. B. Wolff, “Capital
markets union and the fintech opportunity,” Journal
of Financial Regulation, vol. 4, no. 1, pp. 157–165,
Jan. 19, 2018. DOI: 10.1093/jfr/fjx012.

[31] H. F. Atlam, R. J. Walters, and G. Wills, “Fog
computing and the internet of things: A review,” Big
Data and Cognitive Computing, vol. 2, no. 2, pp. 10–,
Apr. 8, 2018. DOI: 10.3390/bdcc2020010.

[32] R. Towe, G. Dean, L. Edwards, et al., “Rethinking data-
driven decision support in flood risk management for
a big data age,” Journal of Flood Risk Management,
vol. 13, no. 4, Aug. 11, 2020. DOI: 10.1111/jfr3.12652.

[33] B. Qolomany, I. Mohammed, A. Al-Fuqaha, M. Guizani,
and J. Qadir, “Trust-based cloud machine learning
model selection for industrial iot and smart city ser-
vices,” IEEE Internet of Things Journal, vol. 8, no. 4,
pp. 2943–2958, Feb. 15, 2021. DOI: 10.1109/jiot.2020.
3022323.

[34] Y. Zhang, X. Ma, S. Wan, H. Abbas, and M. Guizani,
“Crossrec: Cross-domain recommendations based on
social big data and cognitive computing,” Mobile
Networks and Applications, vol. 23, no. 6, pp. 1610–
1623, Aug. 29, 2018. DOI: 10.1007/s11036-018-1112-
1.

[35] B. Sendir, M. Govindaraju, R. Odaira, and P. Hofstee,
“Low latency and high throughput write-ahead logging
using capi-flash,” IEEE Transactions on Cloud Comput-
ing, vol. 9, no. 3, pp. 1129–1142, Jul. 1, 2021. DOI:
10.1109/tcc.2019.2906613.

[36] T. Ahmed, S. Rahman, M. Tornatore, K. Kim, and B.
Mukherjee, “A survey on high-precision time synchro-
nization techniques for optical datacenter networks and
a zero-overhead microsecond-accuracy solution,” Pho-
tonic Network Communications, vol. 36, no. 1, pp. 56–
67, May 24, 2018. DOI: 10.1007/s11107-018-0773-9.

[37] Y. Zhu, M. Interlandi, A. Roy, et al., “Phoebe: A
learning-based checkpoint optimizer.,” Proceedings of
the VLDB Endowment, vol. 14, no. 11, pp. 2505–2518,
Oct. 27, 2021. DOI: 10.14778/3476249.3476298.

[38] B. Balducci and D. Marinova, “Unstructured data
in marketing,” Journal of the Academy of Marketing
Science, vol. 46, no. 4, pp. 557–590, Jun. 12, 2018.
DOI: 10.1007/s11747-018-0581-x.

[39] M. S. Carolan, “Acting like an algorithm: Digital farming
platforms and the trajectories they (need not) lock-in,”
Agriculture and Human Values, vol. 37, no. 4, pp. 1041–
1053, Apr. 13, 2020. DOI: 10 . 1007 / s10460 - 020 -
10032-w.

[40] D. Ojika, A. Gordon-Ross, H. Lam, and B. Patel,
“Faam: Fpga-as-a-microservice - a case study for data
compression,” EPJ Web of Conferences, vol. 214,
pp. 07 029–, Sep. 17, 2019. DOI: 10.1051/epjconf/
201921407029.

[41] P. Kathiravelu, A. Sharma, H. Galhardas, P. V. Roy,
and L. Veiga, “On-demand big data integration: A
hybrid etl approach for reproducible scientific research.,”
Distributed and Parallel Databases, vol. 37, no. 2,
pp. 273–295, Sep. 1, 2018. DOI: 10 . 1007/ s10619 -
018-7248-y.

[42] K. Neshatpour, M. Malik, A. Sasan, S. Rafatirad, and H.
Homayoun, “Hardware accelerated mappers for hadoop
mapreduce streaming,” IEEE Transactions on Multi-
Scale Computing Systems, vol. 4, no. 4, pp. 734–748,
Oct. 1, 2018. DOI: 10.1109/tmscs.2018.2854787.

[43] N. Yamanaka, S. Okamoto, M. Hirono, et al.,
“Application-triggered automatic distributed
cloud/network resource coordination by optically
networked inter/intra data center [invited],” Jour-
nal of Optical Communications and Networking,
vol. 10, no. 7, pp. 15–24, May 17, 2018. DOI:
10.1364/jocn.10.000b15.

[44] A. Kocheturov, P. M. Pardalos, and A. Karakitsiou,
“Massive datasets and machine learning for computa-
tional biomedicine: Trends and challenges,” Annals of
Operations Research, vol. 276, no. 1, pp. 5–34, May 15,
2018. DOI: 10.1007/s10479-018-2891-2.

[45] A. Rezgui, N. Davis, Z. Malik, B. Medjahed, and H.
Soliman, “Cloudfinder: A system for processing big
data workloads on volunteered federated clouds,” IEEE
Transactions on Big Data, vol. 6, no. 2, pp. 347–358,
Jun. 1, 2020. DOI: 10.1109/tbdata.2017.2703830.

[46] U. Paščinski, J. Trnkoczy, V. Stankovski, M. Cigale, and
S. Gec, “Qos-aware orchestration of network intensive
software utilities within software defined data centres:
An architecture and implementation of a global cluster
manager,” Journal of Grid Computing, vol. 16, no. 1,
pp. 85–112, Nov. 27, 2017. DOI: 10 .1007/s10723 -
017-9415-1.

[47] I. Tanaka, K. Rajan, and C. Wolverton, “Data-centric
science for materials innovation,” MRS Bulletin, vol. 43,
no. 9, pp. 659–663, Sep. 10, 2018. DOI: 10.1557/mrs.
2018.205.

9

https://doi.org/10.1038/natrevmats.2017.37
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13638-018-1127-0
https://doi.org/10.1186/s13638-018-1127-0
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1093/jfr/fjx012
https://doi.org/10.3390/bdcc2020010
https://doi.org/10.1111/jfr3.12652
https://doi.org/10.1109/jiot.2020.3022323
https://doi.org/10.1109/jiot.2020.3022323
https://doi.org/10.1007/s11036-018-1112-1
https://doi.org/10.1007/s11036-018-1112-1
https://doi.org/10.1109/tcc.2019.2906613
https://doi.org/10.1007/s11107-018-0773-9
https://doi.org/10.14778/3476249.3476298
https://doi.org/10.1007/s11747-018-0581-x
https://doi.org/10.1007/s10460-020-10032-w
https://doi.org/10.1007/s10460-020-10032-w
https://doi.org/10.1051/epjconf/201921407029
https://doi.org/10.1051/epjconf/201921407029
https://doi.org/10.1007/s10619-018-7248-y
https://doi.org/10.1007/s10619-018-7248-y
https://doi.org/10.1109/tmscs.2018.2854787
https://doi.org/10.1364/jocn.10.000b15
https://doi.org/10.1007/s10479-018-2891-2
https://doi.org/10.1109/tbdata.2017.2703830
https://doi.org/10.1007/s10723-017-9415-1
https://doi.org/10.1007/s10723-017-9415-1
https://doi.org/10.1557/mrs.2018.205
https://doi.org/10.1557/mrs.2018.205

OPENSCIS: , 8, 1–11, 2023

[48] R. Avula, “Architectural frameworks for big data analyt-
ics in patient-centric healthcare systems: Opportunities,
challenges, and limitations,” Emerging Trends in Ma-
chine Intelligence and Big Data, vol. 10, no. 3, pp. 13–
27, 2018.

[49] M. Li, N. Xiong, Y. Zhang, and Y. Hu, “Priority-mece:
A mobile edge cloud ecosystem based on priority tasks
offloading,” Mobile Networks and Applications, vol. 27,
no. 4, pp. 1768–1777, Feb. 26, 2022. DOI: 10.1007/
s11036-022-01930-w.

[50] R. Agrawal and S. Prabakaran, “Big data in digital
healthcare: Lessons learnt and recommendations for
general practice,” Heredity, vol. 124, no. 4, pp. 525–
534, Mar. 5, 2020. DOI: 10.1038/s41437-020-0303-2.

[51] D. Reynolds, J. Ball, A. Bauer, R. P. Davey, S.
Griffiths, and J. Zhou, “Cropsight: A scalable and open-
source information management system for distributed
plant phenotyping and iot-based crop management,”
GigaScience, vol. 8, no. 3, Jan. 31, 2019. DOI: 10 .
1093/gigascience/giz009.

[52] J. W. Woodworth and M. A. Salehi, “S3bd: Secure se-
mantic search over encrypted big data in the cloud,”
Concurrency and Computation: Practice and Experi-
ence, vol. 31, no. 11, Dec. 11, 2018. DOI: 10.1002/
cpe.5050.

[53] W. Liu, P. Cui, J. K. Nurminen, and J. Wang,
“Special issue on intelligent urban computing with big
data,” Machine Vision and Applications, vol. 28, no. 7,
pp. 675–677, Sep. 12, 2017. DOI: 10.1007/s00138-
017-0877-8.

[54] Y. Wang, J. Li, and H. H. Wang, “Cluster and cloud
computing framework for scientific metrology in flow
control,” Cluster Computing, vol. 22, no. 1, pp. 1189–
1198, Sep. 21, 2017. DOI: 10.1007/s10586-017-1199-
3.

[55] V. de Paul Obade and C. Gaya, “Digital technology
dilemma: On unlocking the soil quality index conun-
drum,” Bioresources and bioprocessing, vol. 8, no. 1,
pp. 6–6, Jan. 10, 2021. DOI: 10.1186/s40643- 020-
00359-x.

[56] M. Kansara, “A comparative analysis of security algo-
rithms and mechanisms for protecting data, applica-
tions, and services during cloud migration,” International
Journal of Information and Cybersecurity, vol. 6, no. 1,
pp. 164–197, 2022.

[57] M. Miller, C. Zhu, and Y. Bromberg, “Clubber: Remov-
ing the bioinformatics bottleneck in big data analyses.,”
Journal of integrative bioinformatics, vol. 14, no. 2,
pp. 20 170 020–, Jun. 13, 2017. DOI: 10 . 1515 / jib -
2017-0020.

[58] C. C. Wall, C. Anderson, A. Spring, and J. Gedamke,
“Increasing access to big bioacoustic data through
cloud-based systems,” The Journal of the Acoustical
Society of America, vol. 144, no. 3, pp. 1886–1886,
Sep. 1, 2018. DOI: 10.1121/1.5068271.

[59] M.-T. Cynthia, P.-L. Ingrid, and Y.-M. Alicia, “Digitiza-
tion trends in hospitality and tourism,” Smart Tourism,
vol. 2, no. 2, Nov. 1, 2021. DOI: 10.54517/st.v2i2.
1709.

[60] S. Gao, S. Newsam, L. Zhao, et al., “Geoai 2019 work-
shop report: The 3nd acm sigspatial international work-
shop on geoai: Ai for geographic knowledge discovery:
Seattle, wa, usa - november 5, 2019,” SIGSPATIAL Spe-
cial, vol. 11, no. 3, pp. 23–24, Feb. 13, 2020. DOI:
10.1145/3383653.3383662.

[61] J. Woo, S.-J. Shin, W. Seo, and P. Meilanitasari, “De-
veloping a big data analytics platform for manufacturing
systems: Architecture, method, and implementation,”
The International Journal of Advanced Manufacturing
Technology, vol. 99, no. 9, pp. 2193–2217, Jul. 20,
2018. DOI: 10.1007/s00170-018-2416-9.

[62] D. J. Varon, D. J. Jacob, M. Sulprizio, et al., “ In-
tegrated methane inversion (imi 1.0): A user-friendly,
cloud-based facility for inferring high-resolution methane
emissions from tropomi satellite observations,” Geosci-
entific Model Development, vol. 15, no. 14, pp. 5787–
5805, Jul. 27, 2022. DOI: 10.5194/gmd-15-5787-2022.

[63] S. Sharma, J. Powers, and K. Chen, “Privategraph:
Privacy-preserving spectral analysis of encrypted graphs
in the cloud,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 5, pp. 981–995, May 1,
2019. DOI: 10.1109/tkde.2018.2847662.

[64] B. Ibrahim, D. P. McMahon, F. Hufsky, et al., “A new
era of virus bioinformatics,” Virus research, vol. 251,
pp. 86–90, May 8, 2018. DOI: 10.1016/j.virusres.2018.
05.009.

[65] J. C. Jeong, I. Hands, J. M. Kolesar, et al., “Local
data commons: The sleeping beauty in the community
of data commons.,” BMC bioinformatics, vol. 23,
no. Suppl 12, pp. 386–, Sep. 23, 2022. DOI: 10.1186/
s12859-022-04922-5.

[66] Z. Zhang, K. Barbary, F. A. Nothaft, et al., “Kira:
Processing astronomy imagery using big data technol-
ogy,” IEEE Transactions on Big Data, vol. 6, no. 2,
pp. 369–381, Jun. 1, 2020. DOI: 10.1109/tbdata.2016.
2599926.

[67] B. B. Gupta, S. Yamaguchi, and D. P. Agrawal,
“Advances in security and privacy of multimedia big data
in mobile and cloud computing,” Multimedia Tools and
Applications, vol. 77, no. 7, pp. 9203–9208, Nov. 13,
2017. DOI: 10.1007/s11042-017-5301-x.

[68] J. H. Kim, “A review of cyber-physical system re-
search relevant to the emerging it trends: Industry 4.0,
iot, big data, and cloud computing,” Journal of In-
dustrial Integration and Management, vol. 02, no. 03,
pp. 1 750 011–, Nov. 30, 2017. DOI: 10 . 1142 /
s2424862217500117.

[69] W. Liao, C. Luo, S. Salinas, and P. Li, “Efficient
secure outsourcing of large-scale convex separable
programming for big data,” IEEE Transactions on Big
Data, vol. 5, no. 3, pp. 368–378, Sep. 1, 2019. DOI:
10.1109/tbdata.2017.2787198.

[70] S. Paul, M. Riffat, A. Yasir, et al., “ Industry 4.0
applications for medical/healthcare services,” Journal of
Sensor and Actuator Networks, vol. 10, no. 3, pp. 43–,
Jun. 30, 2021. DOI: 10.3390/jsan10030043.

10

https://doi.org/10.1007/s11036-022-01930-w
https://doi.org/10.1007/s11036-022-01930-w
https://doi.org/10.1038/s41437-020-0303-2
https://doi.org/10.1093/gigascience/giz009
https://doi.org/10.1093/gigascience/giz009
https://doi.org/10.1002/cpe.5050
https://doi.org/10.1002/cpe.5050
https://doi.org/10.1007/s00138-017-0877-8
https://doi.org/10.1007/s00138-017-0877-8
https://doi.org/10.1007/s10586-017-1199-3
https://doi.org/10.1007/s10586-017-1199-3
https://doi.org/10.1186/s40643-020-00359-x
https://doi.org/10.1186/s40643-020-00359-x
https://doi.org/10.1515/jib-2017-0020
https://doi.org/10.1515/jib-2017-0020
https://doi.org/10.1121/1.5068271
https://doi.org/10.54517/st.v2i2.1709
https://doi.org/10.54517/st.v2i2.1709
https://doi.org/10.1145/3383653.3383662
https://doi.org/10.1007/s00170-018-2416-9
https://doi.org/10.5194/gmd-15-5787-2022
https://doi.org/10.1109/tkde.2018.2847662
https://doi.org/10.1016/j.virusres.2018.05.009
https://doi.org/10.1016/j.virusres.2018.05.009
https://doi.org/10.1186/s12859-022-04922-5
https://doi.org/10.1186/s12859-022-04922-5
https://doi.org/10.1109/tbdata.2016.2599926
https://doi.org/10.1109/tbdata.2016.2599926
https://doi.org/10.1007/s11042-017-5301-x
https://doi.org/10.1142/s2424862217500117
https://doi.org/10.1142/s2424862217500117
https://doi.org/10.1109/tbdata.2017.2787198
https://doi.org/10.3390/jsan10030043

OPENSCIS: , 8, 1–11, 2023

[71] J. Vivian, A. A. Rao, F. A. Nothaft, et al., “Toil
enables reproducible, open source, big biomedical data
analyses,” Nature biotechnology, vol. 35, no. 4, pp. 314–
316, Apr. 11, 2017. DOI: 10.1038/nbt.3772.

[72] A. Magdy, L. Abdelhafeez, Y. Kang, E. Ong, and M. F.
Mokbel, “Microblogs data management: A survey,” The
VLDB Journal, vol. 29, no. 1, pp. 177–216, Sep. 18,
2019. DOI: 10.1007/s00778-019-00569-6.

[73] M. Kansara, “A structured lifecycle approach to large-
scale cloud database migration: Challenges and strate-
gies for an optimal transition,” Applied Research in Ar-
tificial Intelligence and Cloud Computing, vol. 5, no. 1,
pp. 237–261, 2022.

[74] W. Cai, J. Zhu, W. Bai, W. Lin, N. Zhou, and K.
Li, “A cost saving and load balancing task scheduling
model for computational biology in heterogeneous cloud
datacenters,” The Journal of Supercomputing, vol. 76,
no. 8, pp. 6113–6139, May 26, 2020. DOI: 10.1007/
s11227-020-03305-y.

[75] A. Sharma and K. D. Forbus, “Graph-based reasoning
and reinforcement learning for improving q/a perfor-
mance in large knowledge-based systems,” in 2010 AAAI
Fall Symposium Series, 2010.

[76] Y.-Y. Teing, A. Dehghantanha, and K.-K. R. Choo,
“Cloudme forensics: A case of big-data investigation.,”
Concurrency and Computation: Practice and Experi-
ence, vol. 30, no. 5, Jul. 31, 2017. DOI: 10.1002/cpe.
4277.

[77] S. Zaheer, A. W. Malik, A. Rahman, and S. A.
Khan, “Locality-aware process placement for parallel
and distributed simulation in cloud data centers,” The
Journal of Supercomputing, vol. 75, no. 11, pp. 7723–
7745, Aug. 28, 2019. DOI: 10 . 1007 / s11227 - 019 -
02973-9.

[78] J. Xu, Y. Shangshu, W. Lu, L. Xu, and D. Yang, “In-
centivizing for truth discovery in edge-assisted large-
scale mobile crowdsensing.,” Sensors (Basel, Switzer-
land), vol. 20, no. 3, pp. 805–, Feb. 2, 2020. DOI:
10.3390/s20030805.

[79] E. Casalicchio and S. Iannucci, “The state-of-the-art in
container technologies: Application, orchestration and
security,” Concurrency and Computation: Practice and
Experience, vol. 32, no. 17, Jan. 19, 2020. DOI: 10.
1002/cpe.5668.

[80] C.-T. Yang, S.-T. Chen, J.-C. Liu, Y.-W. Chan,
C.-C. Chen, and V. K. Verma, “An energy-efficient
cloud system with novel dynamic resource allocation
methods,” The Journal of Supercomputing, vol. 75,
no. 8, pp. 4408–4429, Mar. 6, 2019. DOI: 10.1007/
s11227-019-02794-w.

[81] B. Li, H. Ke, S. Zhou, J. Impagliazzo, and M.
Zhang, “Turc - chinese perspectives on it education,”
Proceedings of ACM Turing Celebration Conference -
China, pp. 39–46, May 18, 2018. DOI: 10 . 1145 /
3210713.3210726.

11

https://doi.org/10.1038/nbt.3772
https://doi.org/10.1007/s00778-019-00569-6
https://doi.org/10.1007/s11227-020-03305-y
https://doi.org/10.1007/s11227-020-03305-y
https://doi.org/10.1002/cpe.4277
https://doi.org/10.1002/cpe.4277
https://doi.org/10.1007/s11227-019-02973-9
https://doi.org/10.1007/s11227-019-02973-9
https://doi.org/10.3390/s20030805
https://doi.org/10.1002/cpe.5668
https://doi.org/10.1002/cpe.5668
https://doi.org/10.1007/s11227-019-02794-w
https://doi.org/10.1007/s11227-019-02794-w
https://doi.org/10.1145/3210713.3210726
https://doi.org/10.1145/3210713.3210726

	Introduction
	System Architecture and Dataflow
	Mathematical Foundations of Streaming Algorithms
	Implementation Aspects in Apache Kafka
	Handling Latency and Scalability Challenges
	Advanced Optimization Strategies
	Conclusion
	Conflict of interest

