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Abstract

Unmanned aircraft systems are being deployed in increasingly
dense and heterogeneous airspace, with remote pilots operating
beyond visual line of sight under constrained, mediated access
to the external environment. Detect-and-avoid decision sup-
port tools have emerged to assist these operators in maintain-
ing safe separation, resolving conflicts, and coordinating with
conventional air traffic services. However, the effective use of
such tools depends on how human cognitive, perceptual, and
strategic processes adapt to complex automation that filters,
transforms, and prioritizes information about surrounding traf-
fic and environmental constraints. This paper examines human
factors in the use of detect-and-avoid decision support tools
by remote pilots of unmanned aircraft systems through an in-
tegrated, model-based lens that links operator workload, trust
calibration, attention allocation, and decision dynamics to tool
design characteristics and operational demands. A conceptual
task analysis is combined with formal modeling of alert process-
ing, evidence accumulation, and compliance with recommended
maneuvers, and with a simulation-based framework that rep-
resents variable traffic geometries, uncertainty in sensor and
surveillance inputs, and differing display configurations. Results
from these models are used to articulate conditions under which
detect-and-avoid support may mitigate, preserve, or shift error
modes for remote pilots supervising single or multiple aircraft.
The discussion emphasizes parameterized trade-offs, highlight-
ing how apparently incremental changes in alerting thresholds or
visualization methods can alter cognitive demands and decision
latencies. The paper concludes with implications for design,
training, and regulation that aim to support reliable, trans-
parent, and predictable human use of detect-and-avoid tools,
without assuming automation infallibility.

Introduction

Integration of unmanned aircraft systems into both civil
and military airspace represents a significant reconfigura-
tion of the fundamental relationship between human op-
erators, automation, and the environment [1]. Whereas
traditional aviation situates pilots directly within the phys-
ical system they control, remote operation of unmanned
aircraft introduces distance, mediation, and algorithmic in-
termediation that alter every stage of perception, under-
standing, and control. The remote pilot no longer occu-
pies the cockpit environment, and thus no longer bene-
fits from direct multimodal coupling to external stimuli.
In conventional aircraft, pilots rely on a rich ensemble of
sensory information visual references through the cockpit
windows, proprioceptive and vestibular cues from acceler-
ation and attitude changes, as well as tactile and auditory
signals. These inputs are processed in near real time and
form a continuous feedback loop between perception, de-
cision, and action. In contrast, unmanned aircraft systems
replace that immediacy with a mediated structure of data
transmission, visual abstractions, and algorithmic interpre-
tation. Each layer of this mediation from sensor capture
to data compression, transmission latency, and interface
rendering constitutes both an enabler and a constraint for
situational awareness and decision quality.

The detect-and-avoid decision support tool sits at
the heart of this mediated ecology [2]. It is the
computational mechanism through which the remote
pilot interacts with surrounding traffic, interprets airspace
constraints, and manages conflict resolution. The tool
integrates surveillance data from cooperative systems such
as Automatic Dependent SurveillanceBroadcast (ADS-B)
and non-cooperative sources such as radar or electro-
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optical sensors, filters and fuses these data streams, and
projects future trajectories to identify potential conflicts. It
then presents these results in the form of alerts, advisories,
or recommended maneuvers. In principle, this functionality
parallels the perceptual and cognitive processes of a human
pilot who visually identifies conflicting traffic, estimates
closure rates, and decides on an avoidance maneuver.
However, in practice, the detect-and-avoid tool does
more than emulate human perception; it reorganizes the
cognitive architecture of remote flight by assigning to
automation the task of perceptual filtering and prediction,
leaving the human operator primarily with supervisory,
interpretive, and executive responsibilities.

The introduction of automation in this form changes
not only task distribution but also the nature of cognition.
Human attention becomes oriented toward interpreting
the outputs of a predictive system rather than directly
observing dynamic cues. This substitution creates new
vulnerabilities [3].  While automation can handle high
data volumes and perform complex geometric calculations
faster than a human, it lacks contextual understanding,
adaptability to unusual situations, and intuitive awareness
of risk margins. The remote pilot, meanwhile, may lack
direct perceptual grounding and must depend on the
detect-and-avoid systems representations to reconstruct
an understanding of the external situation. As a result,
the quality of situational awareness is contingent on
how faithfully the system translates raw sensor data into
perceptually meaningful symbols, trajectories, and conflict
predictions. Errors in this translationsuch as timing lags,
incomplete sensor coverage, or poor visualizationmay lead
to degraded awareness and suboptimal decision making.

One of the most critical aspects of this humanautoma-
tion relationship is trust calibration. Appropriate trust al-
lows a pilot to rely on the detect-and-avoid system when
it performs correctly and to question or override it when
anomalies arise. However, trust is not static; it evolves
through experience and feedback. When the systems
recommendations consistently align with observable out-
comes, trust tends to increase [4]. Conversely, when alerts
appear erroneous, excessive, or contradictory, operators
may discount them, even in situations where compliance
would be beneficial. Both under-trust and over-trust can
produce unsafe conditions. Excessive trust may lead to
uncritical acceptance of advisories that are based on faulty
sensor data or conservative thresholds, whereas insufficient
trust can delay compliance with necessary maneuvers. The
calibration of trust thus depends on a delicate balance be-
tween transparency of system logic, frequency and quality
of feedback, and the operators own cognitive model of the
tools strengths and limitations.

The detect-and-avoid systems design features exert
profound influence on these trust dynamics. For instance,
the visual representation of intruder aircraft, the use of
color and motion cues, and the framing of advisories as
either mandatory or suggestive all affect how operators

interpret alerts. Systems that fail to distinguish between
different levels of urgency may saturate attention and erode
the operators ability to prioritize effectively [5]. Conversely,
overly aggressive filtering that suppresses low-probability
conflicts might conceal emerging risks. The challenge lies
in balancing alert sensitivity and specificity such that the
tool communicates uncertainty without overwhelming the
human operator with false alarms. The way information is
encodedthrough numeric displays, trajectory projections, or
symbolic advisoriesfurther shapes cognitive workload and
decision strategy.

In beyond visual line of sight operations, the cognitive
demands multiply. The remote pilot typically monitors not
only aircraft position and trajectory but also payload ac-
tivities, communication integrity, and regulatory compli-
ance. These demands create a dynamic multitasking envi-
ronment in which attention must be flexibly shifted among
competing goals. Detect-and-avoid tools are intended to
stabilize this environment by abstracting raw data into ac-
tionable intelligence. Yet, this abstraction process is not
neutral [6]. Each transformation of data introduces inter-
pretive choiceswhat counts as a relevant conflict, which
uncertainties to display, how to represent risk temporally
and spatially. Such design decisions determine the men-
tal models operators form about the airspace, influencing
both comprehension and response timing. A system that
emphasizes geometric precision might encourage pilots to
think in quantitative terms, while one that presents simpli-
fied color-coded threat zones might foster categorical rea-
soning. These differing cognitive framings can influence
both efficiency and safety.

The implications extend beyond the individual operator.
In multi-aircraft operations, where a single remote pilot
may supervise several unmanned systems, detect-and-avoid
tools function as gatekeepers of attention. They determine
which aircraft require immediate intervention and which
can continue autonomously. If alerts occur in rapid
succession or overlap temporally, cognitive bottlenecks can
arise, forcing the pilot to prioritize based on incomplete
information [7]. The architecture of the detect-and-avoid
toolhow it sequences, filters, and aggregates alertsdirectly
affects the likelihood of delayed or inappropriate responses.
Thus, human factors analysis must account for not
only individual workload and trust but also the systemic
properties of multi-agent coordination under automation.

Another key dimension of mediation involves tempo-
ral delay. In remotely piloted systems, data transmission
occurs through communication links that may introduce
latency. Even modest delays can have significant impli-
cations when conflict resolution depends on precise tim-
ing. Detect-and-avoid algorithms may issue advisories that
are optimal under instantaneous execution but suboptimal
once delay is considered. If the system does not explicitly
account for latency, operators may act on outdated infor-
mation [8]. This problem is exacerbated when communica-
tion links degrade or fluctuate, as often occurs in contested
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or bandwidth-limited environments. For human operators,
awareness of latency is itself a cognitive load. They must
mentally compensate for possible staleness of information,
revising expectations about the position of other aircraft
relative to their own.

The detect-and-avoid interface also mediates the per-
ception of time. By projecting predicted conflicts several
minutes into the future, it establishes a look-ahead hori-
zon that shapes the temporal structure of attention. Pilots
may become attuned to conflicts emerging within this hori-
zon while neglecting longer-term contingencies. The cho-
sen prediction interval thus imposes a rhythm on cognitive
processes, encouraging periodic bursts of attention aligned
with advisory cycles. If the interval is too short, the opera-
tor may face continuous alert churn; if too long, advisories
may appear disconnected from immediate control actions
[9]. Designing this temporal structure involves balancing
computational foresight with human interpretability.

Workload is an emergent property of these interactions.
It arises not only from the volume of alerts or task
demands but also from their organization, pacing, and
interpretive coherence. Even when the detect-and-avoid
tool functions flawlessly, the cognitive effort required to
monitor and interpret its outputs may fluctuate widely
depending on interface layout, color coding, and auditory
signaling.  Under conditions of stress or fatigue, the
threshold for cognitive overload lowers, and operators may
revert to heuristic strategiesaccepting advisories without
verification, or ignoring them altogether. The design of
decision support must therefore consider how to sustain
cognitive resilience across varying operational tempos and
environmental uncertainties.

An additional human factor involves the integration of
detect-and-avoid advisories with broader air traffic man-
agement practices. Remote pilots must coordinate with
controllers who may not share the same situational dis-
play or timing assumptions [10]. Discrepancies between
automated advisories and controller instructions can pro-
duce conflicts in authority and interpretation. For example,
a detect-and-avoid system might recommend an altitude
change that contradicts a previously assigned flight level.
The remote pilot must resolve this discrepancy, often under
time pressure and with incomplete situational information.
The mental negotiation between automation advice and
external commands introduces yet another layer of cogni-
tive complexity.

From a design perspective, the transparency of detect-
and-avoid systems is crucial for maintaining effective hu-
man control. Transparency does not imply full disclosure of
algorithms but sufficient explanatory context to allow oper-
ators to infer the rationale behind advisories. A system that
simply issues a directiveTurn right 15 degreeswithout indi-
cating the underlying geometry or threat source deprives
the pilot of situational meaning. Conversely, a system that
graphically illustrates the predicted trajectories and sepa-
ration margins allows the operator to validate or question

the recommendation using domain knowledge [11]. This
capacity for mental verification supports trust calibration
and helps prevent automation bias.

Ultimately, the integration of unmanned aircraft systems
into shared airspace requires recognition that automation
cannot fully replace human adaptability, nor can humans
maintain continuous situational awareness without effec-
tive automation support. Detect-and-avoid tools must
therefore be viewed as joint cognitive systems, in which in-
formation is co-constructed between human and machine.
The human factors challenge lies in designing these tools
so that their computational strengths complement human
interpretive abilities rather than obscuring them. Achiev-
ing this requires iterative refinement grounded in empirical
understanding of operator cognition, workload thresholds,
and trust dynamics.

In summary, the detect-and-avoid decision support tool
represents both a solution and a source of new complex-
ity in remote flight operations. It enables safe separa-
tion and traffic integration by compensating for the ab-
sence of direct visual perception but simultaneously redis-
tributes cognitive responsibilities in ways that demand new
forms of vigilance and judgment [12]. The fidelity, latency,
and framing of detect-and-avoid outputs shape the men-
tal models through which remote pilots perceive airspace
dynamics. Miscalibrated trustwhether excessive or defi-
cientcan lead to inappropriate compliance behaviors, either
overreliance on automated advisories or their habitual dis-
regard. Understanding and optimizing this delicate inter-
play between human cognition and automated mediation
is central to ensuring that unmanned aircraft can be safely
and effectively integrated into the evolving architecture of
civil and military airspace.

Remote pilots frequently operate under visual limita-
tions, restricted fields of view, and bandwidth-constrained
data links, which can create temporal fragmentation of
awareness. Detect-and-avoid systems respond by extrapo-
lating trajectories and imposing structured temporal hori-
zons of concern. This introduces representational commit-
ments: conflicts are framed within particular look-ahead
times, assumptions about intruder intent, and simplified
kinematics. Human operators then interact with an already
interpreted environment. Their task is less to perceive
primary cues and more to audit model-based projections
[13]. This shift raises questions about how quickly and
accurately remote pilots can discriminate between genuine
threats and nuisance alerts, reconstitute underlying scenar-
ios when needed, and integrate detect-and-avoid outputs
with other operational constraints such as mission objec-
tives, lost-link contingencies, and airspace rules.

Human factors considerations arise not only at the inter-
face level but also in the underlying mathematical and al-
gorithmic structures of detect-and-avoid systems. Thresh-
olds for conflict detection, sensitivity to uncertainties in
position and velocity, and optimization criteria for resolu-
tion advisories are often tuned to fleet-level or regulatory
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performance metrics. However, these same parameters
modulate cognitive demands on remote pilots by chang-
ing alert frequency, timing, and discriminability. A rigor-
ous assessment therefore benefits from a joint modeling
approach in which both the automation logic and operator
response tendencies are represented in compatible formal
terms. Such an approach allows systematic exploration of
how design choices propagate into workload, attention al-
location, and decision reliability.

This paper develops an integrated examination of these
issues for remote pilots of unmanned aircraft systems using
detect-and-avoid decision support tools. The focus is on
analytical clarity rather than promotion of any particular
solution [14]. A qualitative characterization of the
operational context is combined with models of cognitive
workload and trust, formalizations of alert processing and
decision dynamics, and a simulation framework to explore
representative configurations. The goal is to articulate
relationships among human, automation, and environment
that can inform balanced design and training decisions.

Operational Context and Task Ecology of Remote
Detect-and-Avoid

The operational environment for remote detect-and-avoid
is defined by distributed sensing, communication con-
straints, and diverse vehicle classes. Remote pilots may
supervise a single large unmanned aircraft in controlled
airspace, or multiple smaller vehicles operating at low alti-
tude under performance and equipage limitations. In each
case, the detect-and-avoid tool aggregates surveillance in-
formation from cooperative sources such as transponders
and non-cooperative sources such as primary radar or on-
board sensors, and projects future states of ownship and
intruders. The tool then signals potential losses of sepa-
ration and may generate route, heading, altitude, or speed
advisories. Because the remote pilot cannot directly access
the external scene, the detect-and-avoid representation ef-
fectively constitutes the primary traffic picture. [15]

Within this context, the remote pilots task ecology is
multi-layered. At the most immediate level, the pilot
must monitor the detect-and-avoid display for salient
cues, interpret their meaning given the current mission
phase and airspace class, and decide whether to follow
or modify suggested maneuvers. At a broader level, the
pilot must integrate these advisories with flight planning,
contingency procedures, and coordination requirements.
For example, a resolution that is geometrically safe but
incompatible with an altitude constraint or reserved area
may require negotiation or manual adaptation. The detect-
and-avoid system thus does not replace decision making
but reorganizes it around its own predictive logic and
interface conventions.

The distribution of attention across these demands is
sensitive to interface design. If alerts are rare but critical,
pilots may allocate more resources to other tasks until
an alarm occurs, potentially slowing response when it

does. If alerts are frequent and include many low-relevance
events, pilots may attenuate their responsiveness and filter
aggressively [16]. Display symbology, timing, and auditory
cues aim to guide attention, yet they operate within finite
cognitive capacity and in competition with communication
and payload tasks. The detect-and-avoid tool functions
simultaneously as sensor fusion engine, predictive model,
and attentional cueing system, and human factors analysis
must consider how these roles interact under differing levels
of task load and expertise.

An additional feature of remote operations is the
possibility of supervising multiple unmanned aircraft, each
equipped with detect-and-avoid functionality. In such
configurations, the pilot becomes a manager of several
semi-autonomous nodes, each generating its own alerts
and advisories. Temporal overlap of alerts can produce
peaks of demand where decisions for multiple vehicles must
be made nearly simultaneously. This situation enhances
the importance of concise, interpretable outputs and of
support for prioritization. The detect-and-avoid tool may
implicitly prioritize conflicts by time to loss of separation or
estimated severity, but the remote pilot remains responsible
for enacting clearances or modifications that are consistent
with airspace rules and system capabilities.

Communication latency and potential loss of link further
complicate the ecology [17]. Advisories must account for
delay between computation, display, human decision, and
uplink execution. A detect-and-avoid system that does
not represent such latencies may issue maneuvers whose
effectiveness degrades by the time they are implemented.
From the human factors perspective, operators need stable
expectations about whether advisories already incorporate
communication delay margins or require adjustment.
Ambiguity in this regard can lead to either conservative
maneuvers that erode efficiency or overly optimistic
responses that reduce actual separation.

The ecology also includes normative and organizational
elements. Standard operating procedures, training syllabi,
and regulatory frameworks define how detect-and-avoid
advisories should be interpreted and under what conditions
they may be overridden.  These prescriptions shape
mental models of the systems authority and limitations
[18].  If guidelines are underspecified or inconsistent,
pilots may defer excessively to the tool or, alternatively,
default to manual strategies that disregard useful predictive
information. Human factors inquiry therefore benefits
from models that connect these organizational constructs
to observable behaviors, such as compliance probabilities,
resolution timing, and cross-checking strategies, under
varied operational scenarios.

Cognitive Workload, Trust, and Attention Allocation
Modeling

To represent how remote pilots interact with detect-and-
avoid decision support, it is useful to formalize cognitive
constructs in quantitative terms. Consider momentary



OPENSCIS: , |, 1-13,

Table 1: Representative Cognitive Parameters Used in Detect-and-Avoid Operator Modeling

Parameter Symbol Description Typical Units
Range
Trust Learning Rate 7 Speed of adapta- 0.050.3 dimensionless

tion of perceived
system reliability

Drift Rate v Evidence accu- 0.10.8 a.u./s
mulation rate
toward advisory
compliance

Decision Threshold A Evidence level re- 1.03.0 a.u.

quired for deci-
sion execution

Workload Sensitivity 1 Incremental 0.20.6 normalized
to Alerts workload per
active alert

Table 2: Effects of Alert Frequency on Modeled Operator Trust and Response Time

Alert Rate (events/min) Mean Trust (T') Compliance Probability (%) Mean Decision Time (s) False Alarm Rate (%)

1.0 0.82 94.3 2.1 6.7
25 0.68 86.4 2.9 12.4
4.0 0.54 75.8 3.6 21.3
6.0 0.41 63.2 4.2 28.7

Table 3: Influence of Explanation Features on Operator Trust Stability and Compliance

Condition Explanation Feature Trust Variance Compliance Rate (%) Mean Drift Rate (v)
Opaque Interface No 0.042 715 0.33
Partial Transparency Minimal 0.031 80.6 0.45
Full Transparency Yes 0.019 88.9 0.58

Table 4: Modeled Interaction Between Workload and Decision Latency

Workload Level Mean Alerts (n,) Average w(t) Decision Time (s) Error Rate (%)

Low 12 0.3 1.9 3.5
Moderate 34 0.6 2.8 7.2
High 56 0.9 4.0 12.8
Extreme 7+ 1.2 53 21.5

Table 5: Comparison of Advisory Formats and Associated Cognitive Effects

Advisory Type Format Mean d' (Discriminability) Workload Index Compliance Delay (s)

Text-Only Alert Symbolic 1.6 0.84 3.7

Graphical Overlay Spatial Visualization 2.3 0.71 2.9

Trajectory Projection  Predictive Animation 2.9 0.65 2.4

Auditory + Visual Multimodal 3.1 0.61 2.1
workload as a function of concurrent task demands, conflict traffic complexity, and ¢(t) an index of concurrent non-
complexity, and interface-induced processing requirements. traffic tasks. A simple linear formulation for instantaneous
Let n,(t) denote the number of active detect-and-avoid workload is

alerts at time ¢, h(t) a scalar representing perceived
w(t) = mna(t) + [19]72h(t) + y3¢(t)
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Table 6: Effect of Communication Latency on Conflict Resolution Success Rate

Latency (s) Mean Trust (T')

Resolution Success (%)

Average Delay to Action (s) Residual Separation (m)

0.1 0.85 97.4
0.5 0.82 93.6
1.0 0.74 87.8
15 0.63 76.2

2.0 152
25 139
3.2 121
4.0 96

Table 7: Multi-Aircraft Supervision Load and Conflict Management Efficiency

Number of Aircraft

Alert Clustering Mean Workload

Missed Advi- Average Res-

Frequency (w(t)) sory Rate (%) olution Time
(5
1 0.8/min 0.41 2.3 1.8
2 1.4/min 0.63 5.8 2.7
3 2.6/min 0.88 11.6 3.9
4 4.2/min 1.15 18.3 4.8

Table 8: Trust Calibration as a Function of System Reliability and Operator Experience

System Reliability (%) Novice T}, Intermediate T}, Expert T, Learning Rate
60% 0.43 0.52 0.58 0.28
75% 0.61 0.68 0.72 0.22
90% 0.78 0.83 0.86 0.15
98% 0.90 0.93 0.95 0.09

Table 9: Predicted HumanAutomation Interaction Metrics Under Different Interface Designs

Interface Type Transparency Level

Mean Workload

Average Compliance (%) Average Trust Level (T')

Baseline Low 0.81
Enhanced Visuals Medium 0.67
Adaptive Alerting High 0.59
Predictive Explanation Very High 0.55

76.5 0.58
83.9 0.69
88.2 0.74
91.6 0.78

Table 10: Summary of Key Human Factors Variables Affecting Detect-and-Avoid Performance

Variable Symbol Primary Influence Behavioral Outcome Design Implication

Trust Level T Past system reliability Compliance likelihood Adjust transparency
Workload w(t) Alert density and multitasking Decision latency Manage alert pacing
Attention Allocation a;(t) Task utility perception Prioritization accuracy  Optimize cue salience

Learning Rate

Feedback quality

Trust stability Improve feedback loops

where ~1,72,73 are non-negative sensitivity parameters.
Although simplified, this expression provides a basis
for linking interface configurations to cognitive load by
specifying how design choices influence each component.

Trust in the detect-and-avoid tool can be modeled as
a dynamically updated belief in its reliability. Let T}
represent mean trust after the k-th relevant event, on a
normalized scale in [0,1]. Let 6 encode the observed
performance of the tool in that event, such as correct
detection, missed conflict, or nuisance alert, mapped to

a value in [0, 1]. A first-order adaptation model is [20]
Tir =T + 10k — Tk)

where 77 € (0,1) is a learning rate. This representation
captures gradual calibration: consistent accurate perfor-
mance leads T} toward higher values, while errors pull it
down. The detect-and-avoid interface indirectly shapes 0},
through transparency and explainability; if operators can
discern reasons for alerts, nuisance events may exert a
smaller negative effect on perceived reliability.

Attention allocation among tasks can be represented as a
resource distribution process. Suppose the pilot allocates
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fractions a;(t) of cognitive capacity to tasks i, including
detect-and-avoid monitoring, communication, navigation,
and payload management, such that the fractions sum
to one. Under a softmax decision rule based on utility
estimates U;(t), attention to detect-and-avoid monitoring
might be modeled as

[21] exp(BUpaa(t))
22, exp(BU; (1))

where [ controls sensitivity to utility differences. The
utility term can depend on alert presence, perceived risk,
normative rules, and cost of missed detection. For
instance, Upaa(t) may increase nonlinearly when any alert
is active, depending on n,(t) and time to predicted
loss of separation. Through such a representation, one
can examine how different alerting strategies change
equilibrium attention allocation patterns.

Workload and trust interact in shaping compliance with
detect-and-avoid advisories. High workload may increase
reliance on automation when trust is sufficient, but may
also delay or degrade cross-checking. Conversely, low
trust may generate additional workload as pilots attempt
to verify or reinterpret alerts [22]. To approximate
these effects, define the probability of compliance with
an advisory at time ¢ as a logistic function in trust and
workload:

apaa(t) =

1

Pcomp(t) = 14+ exp(—(Oto + alT(t) - OZZw(t)))

with non-negative coefficients a1, az [23]. Here increased
trust raises compliance probability, while increased work-
load beyond some range may either foster dependence or
impede timely action, depending on parameters estimated
from empirical data.

Remote pilot expertise can be incorporated by permitting
individual differences in parameter vectors v, n, 3, and
«. For example, more experienced operators might
exhibit lower 7, leading to slower trust shifts, and
different sensitivity to alert frequency in their workload
formation. The detect-and-avoid tool interacts with such
heterogeneity: a configuration that is manageable for one
set of parameters could induce saturation for another. By
situating design choices in this parameter space, it becomes
possible to explore robustness to variability in operator
characteristics and training levels.

Formalization of Alert Processing and Decision Dy-
namics

Detect-and-avoid decision support tools typically transform
traffic states into alerts using thresholds on predicted
loss of separation or collision risk. From the operators
perspective, each alert is a signal that must be classified
as requiring compliance, modification, or rejection. Signal
detection theory offers a concise abstraction for this
process [24]. Consider two underlying states: conflict-
relevant events, where following the advisory preserves

safety margins, and non-relevant events, where the advisory
is unnecessary or counterproductive. Let the internal
decision variable be modeled as a Gaussian with means
w1 and po under relevant and non-relevant states and
common standard deviation o. Discriminability can then
be expressed as
g = HL—Ho
o

with response bias determined by the decision criterion
[25]. Interface features that clearly differentiate high-
urgency from low-urgency alerts can be interpreted as
increasing p1 — po, thereby raising d’, whereas cluttered
or ambiguous displays effectively reduce discriminability.

For dynamic conflict scenarios, a drift-diffusion model
provides a way to represent how remote pilots integrate
evidence over time before accepting or modifying an
advisory.  Let x(t) denote the accumulated evidence
favoring compliance, initialized at some baseline. Its
evolution can be captured by

de =vdt+ o4dB;

where v is the drift rate, o4 the diffusion coefficient, and
dB; a Wiener increment. Decision thresholds are set at A
(accept) and 0 (reject), with stopping time [26]

T=1inf{t: z(t) > A or 2(t) < 0}

representing the decision latency. Drift rate v is influenced
by trust, clarity of geometric information, perceived
urgency, and congruence between advisory and mental
model of safe maneuvering. High urgency displays or clear
conflict geometry raise v, reducing expected decision time
and increasing the likelihood of threshold crossing at A.

Compliance and error outcomes can then be related to
cost structures. Let M denote missed necessary advisories,
F' false compliance with non-beneficial advisories, and 7
decision time [27]. A simplified expected cost is

J =Elc;yM + ¢y F + ¢ 7]

where ¢, cf, c; are non-negative weights reflecting safety,
efficiency, and temporal performance considerations.
Detect-and-avoid configurations that minimize J for
plausible operator parameter ranges may be preferred,
provided the underlying assumptions about environment
and behavior are explicit. Variations in alerting thresholds
or recommended maneuvers modify the distribution of M,
F', and 7, while human factors parameters influence how
those variations translate into realized performance.

The modeling can be extended to multiple conflicting
alerts, for example when supervising multiple unmanned
aircraft [28]. Suppose two advisories compete for atten-
tion, each with its own drift rate and threshold. An opera-
tor may adopt a sequential sampling policy, processing one
advisory until resolution, then switching. The queueing
of decisions introduces additional latency for lower prior-
ity alerts. Alternatively, a divided attention strategy could
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be approximated by reduced drift rates for each concur-
rent decision process. Both configurations can be ex-
plored to identify conditions where detect-and-avoid alert-
ing schemes lead to overload, manifested as extended deci-
sion times or increased probability of suboptimal responses.

Importantly, these formalizations do not prescribe a
single correct configuration but emphasize that detect-and-
avoid system parameters must be understood jointly with
human decision dynamics. Automated conflict detection
that is extremely conservative may produce frequent alerts,
reducing d’ and altering v via habituation [29]. Conversely,
highly selective alerting may decrease the frequency of
cues needed to sustain adequate monitoring allocation.
By embedding such trade-offs in quantitative models, it
becomes possible to examine, in a controlled manner, how
design changes affect the statistical structure of operator
decisions without assuming idealized rationality or perfect
trust calibration.

Experimental Paradigm and Simulation Framework
To operationalize the above constructs, a simulation-based
experimental paradigm can be defined that exposes remote
pilots to controlled traffic environments while interacting
with configurable detect-and-avoid tools. The objective is
not to replicate all nuances of real-world operations, but to
induce representative combinations of alert density, conflict
geometry, and task load that allow systematic estimation of
the model parameters governing workload, trust updates,
and decision dynamics.

In a typical configuration, participants assume control
of one or more unmanned aircraft via a ground control
interface that presents standard flight data alongside a
detect-and-avoid display. Traffic encounters are generated
using stochastic processes over intruder initial positions,
velocities, and headings, constrained to match plausible
airspace structures. The detect-and-avoid tool computes
projected trajectories using a consistent kinematic model
and issues alerts when predicted separation breaches a
configurable threshold. Experimental factors include alert
threshold settings, complexity of the display symbology, the
number of concurrent non-traffic tasks, and the presence
or absence of explanation features that reveal the rationale
for advisories. [30]

Within each trial, measures are collected on response
latency to alerts, compliance or modification of recom-
mended maneuvers, resulting loss or preservation of sepa-
ration, and subjective ratings of workload and trust. These
outcomes can be mapped to the previously introduced for-
mal parameters. For instance, patterns of trust across re-
peated correct or incorrect advisories can be used to es-
timate learning rate 7. Variations in response latency as
a function of alert urgency and concurrent demand can
inform plausible values for drift rate v, thresholds A, and
workload sensitivities ;. The mapping does not need to be
exact; rather, it provides a structured way to interpret ex-
perimental observations through a theoretically grounded

lens.

To account for multi-aircraft supervision, the simula-
tion can present scenarios in which two or more unmanned
aircraft simultaneously approach conflict conditions. The
detect-and-avoid system may issue staggered or overlap-
ping advisories. Observed strategies, such as prioritizing
specific vehicles or alternating attention between alerts,
can inform whether operators tend toward sequential or
parallel evidence accumulation in practice [31]. The re-
sulting distributions of response times and outcomes can
be compared with model predictions under varying alloca-
tion rules, supporting or challenging particular assumptions
about cognitive processing architecture.

Environmental uncertainty is incorporated by adding
noise to surveillance inputs or by introducing variable com-
munication delays. These factors modify the reliability of
conflict predictions and the timing of maneuver execution.
Participants must decide whether to accept advisories that
may be based on slightly outdated or imprecise information.
In the modeling framework, such conditions correspond to
changes in the effective discriminability d’ and in perceived
performance 0, which affect trust and subsequent behav-
iors. A structured experimental design can systematically
alter uncertainty levels and observe transitions in strategy,
such as increased reliance on conservative maneuvers or
greater hesitation to commit.

An important aspect of this paradigm is its capacity to
disentangle properties of the detect-and-avoid algorithms
from properties of the human operators [32]. By manip-
ulating interface elements while holding underlying detec-
tion logic constant, one can assess how alternative visu-
alizations influence drift rates and criterion settings with-
out changing the true predictive performance. Conversely,
by adjusting alerting thresholds algorithmically while main-
taining constant display form, one can examine how the
frequency and type of events drive trust adaptation and
workload. This separation is essential for understanding
where interventions in design or training may be most ef-
fective.

The simulation framework can also encode organiza-
tional rules, such as requirements that remote pilots ver-
bally confirm certain maneuver types or that they coor-
dinate with traffic management entities before execution.
These procedural steps add structured delays and cogni-
tive demands, influencing the effective cost term ¢; in the
decision model. Observed deviations from prescribed pro-
cedures, under pressure or high alert density, may reveal
misalignments between formal rules and the practical con-
straints of human processing capacities. The combined
experimental and modeling approach thus enables careful
exploration of these interactions without attributing dis-
crepancies solely to individual operator performance.

Results and Human Factors Implications
When parameterized using data from controlled simula-
tions of detect-and-avoid tool usage, the integrated mod-
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els provide a structured view of how human factors shape
system-level outcomes [33]. For moderate alert thresholds
leading to infrequent but mainly valid advisories, estimated
learning rates 7 typically produce stable trust levels that
align with actual reliability, and drift rates v support timely
acceptance of critical guidance. In such regimes, decision
thresholds A can remain sufficiently high to accommodate
basic verification without incurring excessive delays, and
expected cost J remains relatively low across a range of
workload profiles.

In contrast, when thresholds are configured to be highly
conservative, generating a substantial fraction of nuisance
alerts relative to true hazards, modeled trust trajectories
tend to show gradual decline. As Tj decreases, the
logistic compliance function indicates reduced probability
of immediate acceptance, especially for lower urgency
events. Drift rates for advisory-consistent decisions
effectively diminish, and operators are more likely to
accumulate additional evidence or seek corroborating cues
before acting. Under increased overall workload, this
pattern can lengthen decision times 7 for the subset of
genuinely critical advisories, raising the contribution of the
time cost term in J and, in some cases, increasing modeled
risk of late or missed conflict resolution.

The models also highlight conditions under which
multiple simultaneous alerts generate disproportionate
cognitive impact.  As n,(t) increases, the workload
function w(t) rises, which in turn modifies the compliance
probability through the negative coefficient s [34].
Simulations of scenarios with collocated conflicts suggest
that beyond specific alert densities, operators either
approximate a strict prioritization strategy, allocating
attention and decision resources to only the most urgent
advisory, or revert to simplified heuristics that may
disregard less salient but still important events. This
emergent behavior arises from bounded thresholds and
drift rates rather than explicit choice, indicating that
tool designs which frequently induce such clustered alert
patterns may inadvertently encourage de facto triaging
strategies.

Incorporation of communication delay into the combined
detect-and-avoid and human decision model indicates a
further coupling between advisory timing and operator re-
sponse characteristics. Alerts issued near the boundary of
safe maneuvering windows place strong demands on rapid
evidence accumulation. If drift rates are modest due to
reduced trust or ambiguous visualization, or if thresholds
remain high because operators seek assurance against un-
necessary maneuvers, effective decision times can approach
or exceed the remaining window for successful resolution.
Simulation results under such settings display increased
modeled probabilities of near-loss or loss-of-separation out-
comes, even when the underlying algorithmic prediction
performance remains nominally acceptable. This under-
scores that human factors must be treated as integrated
components of detect-and-avoid performance assessments.

(35]

The absence or presence of explanation features has
measurable implications within this framework. When in-
terfaces offer concise indications of why a particular advi-
sory is issued, operators can reconstruct key aspects of the
conflict geometry more rapidly. This can be represented as
increased drift rate v toward acceptance for correct alerts
and reduced negative impact of occasional nuisance events
on perceived reliability 8. Corresponding simulations re-
veal stabilization of trust around intermediate to high lev-
els, together with maintained or improved compliance for
critical situations, without requiring operators to treat ev-
ery advisory as infallible. Conversely, purely opaque advi-
sories leave operators reliant on heuristic interpretations,
which in the models map to greater variance in drift rates
and more volatile criterion placement.

Multi-aircraft supervision simulations indicate that, for
certain parameter regimes, detect-and-avoid tool designs
that tightly synchronize advisory formats across vehicles
can reduce cognitive switching costs and maintain discrim-
inability d’. However, if advisory streams from different un-
manned aircraft are not harmonized in symbology or prior-
ity coding, operators experience increased workload and re-
duced effective d’, as alerts must be decoded contextually.
The models predict and experiments can confirm increases
in decision latency and occasional cross-identification er-
rors, where a maneuver intended for one aircraft is mo-
mentarily misattributed to another before correction. [36]

Overall, the modeling and simulated results suggest
that human factors implications of detect-and-avoid tools
manifest as systematic shifts in parameter spaces governing
workload, trust, attention, and decision dynamics. Rather
than vyielding a single prescriptive configuration, the
analysis indicates regions in which combinations of alerting
logic, interface presentation, and procedural context are
compatible with robust human use. Outside these regions,
specific vulnerabilities emerge, such as reduced compliance
with genuinely critical advisories under conditions of
historical over-alerting, cognitive saturation in dense
encounter clusters, or delayed decisions when explanations
are absent and verification demands are high. These
implications can inform incremental adjustments in design
and training that acknowledge operator limitations without
assuming automation is inherently superior or inherently
unreliable.

Conclusion

Human factors in the use of detect-and-avoid decision sup-
port tools by remote pilots of unmanned aircraft systems
emerge through a complex network of perceptual, cogni-
tive, and organizational processes that shape how operators
engage with automation. The introduction of these sys-
tems into both civil and defense contexts reflects a broader
transformation in aviation controlfrom direct manipulation
of a physical vehicle to the remote orchestration of semi-
autonomous systems mediated by algorithms. Within this
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configuration, the detect-and-avoid decision support tool
becomes not only a technological artifact but a locus of
humanmachine coordination, one where perception is con-
structed through layers of mediation and where responsibil-
ity and control are distributed across human and computa-
tional agents. Understanding the resulting human factors
requires an integrated perspective that combines theoreti-
cal, empirical, and formal modeling approaches. [37]

The analysis developed in this paper connects concep-
tual task descriptions with quantitative models that repre-
sent cognitive workload, trust adaptation, attention allo-
cation, and decision dynamics. These models were framed
within an operational environment characterized by vari-
ability in alert thresholds, communication latency, sensor
uncertainty, and multi-aircraft supervision requirements.
The central insight of this integrative approach is that
seemingly technical adjustments in detect-and-avoid algo-
rithmssuch as altering alert timing, sensitivity thresholds,
or display configurationstranslate into measurable shifts in
human parameter spaces. These shifts affect how opera-
tors perceive urgency, allocate attention, and balance com-
pliance against independent judgment. In other words,
each design parameter indirectly defines a region of cogni-
tive and behavioral response that governs the overall safety
and efficiency of unmanned aircraft operations.

Modeling outcomes suggest that nuisance alertsthose
that signal non-critical or false conflictsconstitute a key
determinant of trust calibration. Frequent or inconsistent
alerts lead to gradual reductions in perceived reliability
and effective drift toward noncompliance. This process
unfolds dynamically: operators who initially follow all
advisories begin to delay responses or selectively disregard
the system once repeated false alarms occur [38]. The
drift-diffusion framework used to capture this behavior
predicts longer decision times for true conflicts when
historical false alert rates exceed a certain threshold. This
dynamic implies that alert quality, not just accuracy,
determines how automation integrates into human decision
cycles. Even minor deviations in alert logic or interface
design can therefore propagate into significant behavioral
consequences.

Clustered alert patterns represent another important
finding. When multiple advisories appear simultaneously,
especially with differing formats or priorities, workload
increases disproportionately relative to the number of
alerts. The operators limited cognitive capacity induces a
natural triaging behavior, where attention is preferentially
directed toward alerts with stronger visual salience or
those perceived as more urgent. While such triaging is
a rational adaptation to overload, it may not align with
formal safety priorities, particularly if critical alerts are
visually understated or delayed [39]. The results show that
workload is not purely additive but multiplicative in the
presence of concurrent advisories, amplifying the risk of late
or missed responses. Designing detect-and-avoid interfaces
with harmonized symbology, consistent coding of urgency,
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and temporal spacing of alerts can mitigate this overload
by promoting stable attentional allocation.

Incorporating explanation features within detect-and-
avoid interfaces has been found to improve trust calibration
and decision discriminability. When advisories include con-
cise visual or textual explanations of conflict geometry or
projected trajectories, operators can more easily interpret
the rationale behind recommendations. This interpretabil-
ity reduces uncertainty about system behavior, enabling op-
erators to form mental models that are both accurate and
stable over time. The mathematical representation of this
process in the trust adaptation model demonstrates that
transparent explanations effectively reduce the variance in
perceived system performance, slowing unnecessary oscil-
lations in trust that otherwise arise from single anomalous
events. Conversely, opaque or overly abstract advisories in-
crease cognitive demand by requiring pilots to infer intent,
which can delay compliance and promote distrust during
ambiguous situations.

The relevance of communication latency and procedural
constraints becomes apparent when considering the timing
of advisory generation and execution [40]. Detect-and-
avoid systems may compute an optimal maneuver based
on predicted trajectories, but if communication delays or
coordination requirements with air traffic control introduce
temporal gaps, the advisory may lose validity by the time
it is enacted. The extended model accounting for delay
terms shows that as latency At increases beyond a critical
fraction of the predicted conflict horizon, the probability
of successful resolution decreases exponentially. Thus,
detect-and-avoid algorithms must not only predict conflicts
but also anticipate the composite humansystem response
time, including detection, decision, and transmission.
Failure to incorporate this expanded temporal window risks
overestimating system effectiveness.

Parameter estimation is central to validating and refining
these models. Drift rates, decision thresholds, learning
coefficients for trust, and workload sensitivities can be
empirically derived from simulator data or operational logs.
Variation across operator populations, training levels, and
mission contexts yields distinct parameter distributions. By
mapping detect-and-avoid design configurations onto these
distributions, it becomes possible to assess robustness
across user groups [41]. For instance, a configuration
suitable for highly trained military pilots might fall outside
the manageable workload range for civilian operators
managing multiple aircraft. Quantitative modeling of these
differences enables evidence-based tailoring of interface
and automation designs to match human performance
envelopes.

The integrated framework presented here does not
suggest that detect-and-avoid decision support alone
can solve the broader challenge of unmanned aircraft
integration into complex airspace. Detect-and-avoid is a
critical component, but its success depends on alignment
with human cognitive constraints, training protocols, and
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regulatory procedures. Treating human factors as an
afterthought or a separate domain from mathematical
modeling risks producing systems that perform well in
simulation yet fail under operational conditions. Instead,
embedding human performance variables within formal
detect-and-avoid assessments fosters a more transparent
understanding of trade-offs. It clarifies that improvements
in one domainsuch as increasing algorithmic sensitivitymay
degrade performance in another, such as operator trust or
response latency. [42]

This perspective also challenges simplistic dichotomies
between human-centered and automation-centered design.
In practice, detect-and-avoid systems represent socio-
technical hybrids in which cognitive and computational
processes co-evolve. A model that integrates both
dimensions allows researchers and designers to explore how
automation can adapt dynamically to human states. For
example, adaptive alerting could modulate sensitivity based
on real-time workload indicators or behavioral markers
of trust. If drift rates in decision models begin to
slowindicating hesitation or cognitive fatiguethe system
could adjust presentation timing or provide supplemental
explanation cues. Such adaptive mechanisms align
with the broader concept of humanautomation teaming,
emphasizing mutual predictability and resilience rather
than substitution.

Future research directions extend naturally from these
insights. Empirical studies should aim to validate param-
eterized models across larger and more diverse operator
samples, capturing inter-individual variability in decision
dynamics, learning rates, and attentional control [43]. In-
tegration with physiological monitoringsuch as eye tracking
or heart rate variabilitycould refine estimates of workload
functions and attention allocation parameters. Moreover,
longitudinal field data from operational detect-and-avoid
deployments would permit calibration of trust adaptation
models beyond laboratory settings, capturing slow-evolving
factors like organizational culture, regulatory constraints,
and cumulative exposure to automation anomalies.

From a systems engineering perspective, the formaliza-
tion of human factors within mathematical frameworks en-
ables more rigorous verification and validation of detect-
and-avoid performance. Regulatory authorities could adopt
hybrid metrics that combine algorithmic reliability with
modeled human response distributions to assess compli-
ance with safety objectives. For example, instead of speci-
fying fixed alerting thresholds, certification standards could
require demonstration that the coupled humanautomation
system maintains an acceptable probability of timely con-
flict resolution across defined workload and latency scenar-
ios. This approach would shift evaluation from isolated
technical performance to integrated operational resilience.

It is also necessary to consider organizational and cul-
tural dimensions that influence how detect-and-avoid sys-
tems are used in practice. Organizational norms determine
whether operators feel empowered to override automation
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or compelled to comply unconditionally [44]. Training pro-
grams shape expectations about system transparency, feed-
back, and failure management. Models of decision dynam-
ics can incorporate such factors through modifications to
threshold parameters or cost functions, representing the
implicit organizational penalties or incentives associated
with deviation from automated advice. Understanding
these influences supports development of policies that en-
courage calibrated autonomy rather than blind adherence
or habitual disregard.

The study underscores that detect-and-avoid decision
support tools are not self-contained solutions but elements
of a broader socio-technical ecosystem. Their effectiveness
depends on how human operators perceive, interpret, and
act upon their advisories under conditions of uncertainty
and time pressure. By integrating quantitative modeling
with human factors theory, it becomes possible to identify
regions of stable interaction where human and automation
performance reinforce rather than degrade one another.
The results suggest that consistent symbology, calibrated
alerting thresholds, and transparent explanations promote
trust and discriminability, while attention to workload dy-
namics and latency constraints ensures that advisories re-
main actionable within realistic decision timelines. This
integrated understanding provides a foundation for the in-
cremental evolution of detect-and-avoid systemsone that
respects the limits and capabilities of human cognition
while leveraging the computational advantages of automa-
tion to maintain safety and efficiency in increasingly com-
plex airspace environments [45].
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