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Abstract

Transient near-wellbore phenomena strongly influence measured
pressures, temperatures, and flow rates in wells during drilling,
completion, and production operations. These short-time
responses encode information about local formation properties,
near-wellbore damage or stimulation, and dynamic interactions
between the wellbore and the surrounding porous medium. At
the same time, they govern early-time well control behaviour,
including detection of influxes, losses, and unstable flow
regimes. Modeling and interpretation of these phenomena
require rigorous treatment of multiphase flow, thermal and
mechanical coupling, and the finite dimensions and storage
of the wellbore. This work develops a mathematical and
computational framework for describing transient near-wellbore
processes and provides strategies for extracting formation and
operational parameters from high-frequency measurements.
The framework combines partial differential equation models
for porous media flow and energy transport with reduced-order
descriptions of the wellbore and its control logic. Numerical
schemes tailored to the strong gradients and short time
scales near the wellbore are discussed alongside data-driven
surrogates that approximate the full physics. The analysis
explores how different sources of non-ideal behaviour, such as
skin, partial penetration, non-Darcy effects, and geomechanical
coupling, distort the early-time signatures used in conventional
interpretation. Machine-learning-based inversion and statistical
analysis are used to map transient responses to uncertain
formation properties in a probabilistic manner. The resulting
methodology is intended to inform well control strategies
and formation evaluation workflows that explicitly account for
near-wellbore transients, without overstating their predictive
capability, and to clarify the limits of interpretability under
realistic levels of noise, operational constraints, and model
uncertainty.

Introduction

Near-wellbore regions of subsurface formations play a dis-
proportionate role in determining well performance, well
control response, and the quality of formation evaluation
[1]. Even when the reservoir far from the well is relatively
homogeneous, the small volume around the wellbore can
exhibit altered permeability, damaged or stimulated rock,
complex saturation histories, and temperature perturba-
tions induced by drilling and completion operations. Mea-
surements acquired at the wellhead or downhole, such as
pressure, flow rate, and temperature, are shaped by the
transient flow and transport processes occurring over ra-
dial distances that may be only a few borehole radii. The
short time scales associated with these processes give rise
to characteristic signatures that are sensitive to local prop-
erties and boundary conditions, but their interpretation is
challenging due to the superposition of multiple physical
mechanisms and operational effects.

Classical well test analysis has established a rich set
of analytical and semi-analytical solutions for transient
flow to a well in infinite or bounded reservoirs, focusing
primarily on late-time behaviour where the flow appears
radial, linear, or spherical at a scale much larger than the
wellbore. These solutions underpin many of the traditional
approaches for estimating permeability, skin, and boundary
distances [2]. However, they often idealize the near-
wellbore region through simplified skin factors and wellbore
storage coefficients, and they typically assume single-
phase, isothermal, and linear Darcy flow. In early-time
and high-frequency regimes, especially in modern wells
with complex completion architectures, these assumptions
are limited. Deviations from ideal behaviour appear in
the recorded signals as non-classical slope changes, rate-
dependent hysteresis, or coupled pressure and temperature
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Figure 1: Conceptual structure of the near-wellbore system showing surface measurements, the wellbore fluid column, the altered
near-wellbore zone with skin and multiphase or thermo—poroelastic effects, and the transition to the far-field reservoir where classical

radial-flow assumptions typically apply.

Table 1: Key quantities in single-phase radial near-wellbore flow

Symbol Description Units

¢ Porosity _

k Permeability m?

ct Total compressibility Pa—!

I Viscosity Pas

p(r,t) Formation pressure Pa

qs(r, 1) Volumetric source/sink term m3s~Im=3

transients that are not captured by traditional models.

The development of advanced instrumentation and
downhole telemetry has increased the availability of
high-resolution transient data near the wellbore. Dis-
tributed temperature and acoustic measurements, multi-
point downhole pressure sensors, and fast surface mea-
surement systems can resolve pressure and temperature
dynamics over time scales down to seconds or less. In
principle, such data enable more detailed characterization
of formation properties and early detection of unwanted
events such as influxes or losses [3]. In practice, extracting
this information requires models that resolve the relevant
physics at appropriate scales while remaining computation-
ally tractable for online or near-real-time use. This balance
motivates the use of hierarchical modeling strategies that
combine detailed numerical solutions with reduced-order
and data-driven representations.

The present work considers a set of coupled governing
equations for flow and energy transport in the near-wellbore
region, coupled to reduced-dimensional wellbore models
that represent the dynamics of fluid columns and boundary
conditions imposed by well control equipment. The
formulation is based on conservation of mass and energy
in a porous medium, combined with constitutive relations
for Darcy or non-Darcy flow, phase behaviour, and, when

relevant,

wellbore regions with altered permeability and porosity.

Beyond deterministic modeling, the work addresses the
interpretation of transient data through both analytical
and data-driven approaches [4]. Analytical solutions and
asymptotic analyses are used to clarify the influence of in-
dividual physical mechanisms and to derive dimensionless
Numerical simula-
tions provide synthetic data sets for training and evaluat-
ing machine-learning models that map measured transients
to underlying formation and operational parameters. Sta-
tistical frameworks are introduced to quantify uncertainty
in such inversions and to assess identifiability limits given
realistic measurement noise and model errors. The over-
all objective is to provide a coherent basis for integrating
transient near-wellbore modeling into well control and for-
mation evaluation workflows, emphasizing both capabilities

groups that capture key behaviours.

and limitations.

poroelastic effects that couple pressure and
mechanical deformation. These equations are specialized
to configurations of practical interest, such as radial
flow in cylindrical coordinates with wellbore storage and
skin, partially penetrating completions, or composite near-
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Table 2: Wellbore coupling and storage parameters

Symbol Description Expression Units
T Wellbore radius given m
h Effective producing height given m
Cu Wellbore storage coefficient modelled m3 Pa~!
D (t) Sandface pressure ODE variable Pa
qr(t) Inflow from formation —2wrwh%% . m3s—!
s, surf(t) Surface-controlled rate control input m3s1

Table 3: Composite near-wellbore region and skin representation
Region Parameter Meaning Typical relation
Inner (ry, <7 <rg) ks Skin-zone permeability ksk,
Inner Os Skin-zone porosity modified vs. ¢,
Inner Cts Skin-zone compressibility  altered storage
Outer (r > ;) k. Far-field permeability reference value
Outer Or Far-field porosity reference value
Interface r = ry Ds = Pr Pressure continuity boundary condition

Interface r = r, ksOrps = kyOrpy

Flux continuity boundary condition

Physical processes and mathematical formulation of
near-wellbore flow

A typical starting point for modeling transient near-
wellbore flow in a slightly compressible single-phase system
is the combination of mass conservation and Darcy's law
in a cylindrical coordinate system centered on the well.
For a porous medium with porosity ¢, permeability k, and
total compressibility ¢;, the pressure field p(r,t) in radial
coordinate 7 and time ¢ satisfies a diffusion-type equation
derived from conservation of mass. Assuming negligible
gravity within the near-wellbore zone and constant viscosity
1, the radial mass conservation equation can be written as

(5]

k Op

¢Ct Tpg

g _10
ot  ror

) + 4, 1), (1)

where ¢s(r,t) represents distributed source or sink terms
associated with wells or interfacial exchange between
regions. The radial dependence in the operator captures
the geometric spreading of flow away from the wellbore,
and the combination ¢c; defines a storage capacity per
unit volume.

The presence of a finite wellbore radius 7, and wellbore
storage leads to coupling between the porous medium and
the fluid column inside the well. If p,(t) denotes the
pressure at the sandface, the mass balance in the wellbore
under a compressible or partially compressible fluid model
can be approximated by an ordinary differential equation
of the form

dpw

w dt - QT(t) - qs,surf(t)v (2)

where C,, is an effective wellbore storage coefficient, g (t)
denotes the radial inflow from the formation into the

wellbore at the sandface, and g, surf(t) is the surface-
controlled flow rate imposed by well control equipment.
The radial inflow is related to the pressure gradient at the
wellbore boundary by

k Op

qr(t) = —27T7“wh; E 5 (3)

rT=rw

with h the effective producing height [6]. This boundary
condition closes the coupling between the partial differen-
tial equation in the formation and the ordinary differential
equation in the wellbore.

Near-wellbore deviations from ideal radial flow are often
represented by a skin region of thickness ¢ around the
wellbore where properties differ from those of the far-field
reservoir. In a simple composite model, the permeability in
this region, ks, may be smaller or larger than the far-field
permeability k., while porosity and compressibility can also
be modified. Let ry = r,, + § denote the outer radius of
the altered zone. The governing equation is then defined
piecewise for r, < r < 7y and r > r, with properties
(ks, @s,ct5) and (K, ¢p,ci ), respectively. Continuity
of pressure and radial flux at r = 7 imposes interface
conditions

Ps (T;a t) = Dr (Tj7 t)a (4)
Ops Opr

ks—— = k,— . 5
87’ r=rg 87’ 7”:7“8+ ( )

These relations define a local perturbation that modifies
the effective pressure drop near the wellbore and gives rise
to skin behaviour observable in transient tests.

Thermal effects add another layer of complexity to near-
wellbore dynamics [7]. When injected or produced fluids
have temperatures that differ from the initial formation
temperature, energy transport in the porous medium and
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Table 4: Thermal and thermo-hydro-mechanical quantities

Symbol  Description

Role Units

T(r,t)  Temperature field

pCyp Effective volumetric heat capacity
Neff Effective thermal conductivity

v Darcy velocity

qr(r,t) Heat source/sink

€y Volumetric strain

@ Biot-type coefficient

State variable K

Storage in energy balance Jm3K™!
Conduction term Wm~tK™!
Advection of heat ms—!
Thermal forcing Wm—3

Poroelastic coupling —
Pressure—strain link —

Table 5: Dimensionless variables and key groups for radial flow

Quantity Definition Interpretation
D T/Tw Dimensionless radius
kt
tp — Diffusion-scaled time
ppcry,
PD (p — pi)/ Apres Scaled pressure drop
Cp Cuw/(2mdcir2 h) Dimensionless storage
S Skin factor (log-composite) Near-wellbore resistance
For Aefit / (pCpr2)) Thermal Fourier number

wellbore can alter fluid properties and induce thermoelastic
stresses. An energy balance written for the porous medium,
assuming local thermal equilibrium between fluid and solid
and effective volumetric heat capacity pC),, leads to

oT
pCpE
where T'(r,t) is temperature, Ao is an effective thermal
conductivity, v is the Darcy velocity, and g represents heat
sources or sinks. In near-wellbore regions, the advective
term associated with radial flow can be important, and
the interplay between pressure-driven flow and temperature
evolution can produce characteristic transient signatures.
The Joule—~Thomson effect and fluid property variations
with temperature and pressure can be included through
appropriate dependence of 1 and p on p and T', though in
many near-wellbore applications a linearization is sufficient
for analytical studies.

In many formations, mechanical deformation induced
by pressure changes can significantly influence porosity
and permeability. Poroelasticity provides a framework
for capturing such coupling. A simple linear relationship
between volumetric strain €, and fluid pressure, for a fixed
stress state, can be written as

=V ()\eﬂrVT) — pCp V- VT[S} + QT<T7 t)7 (6)

P—Dpo

B, )
where « is a Biot-type coefficient, M is a modulus
characterizing the compressibility of the porous skeleton,
and pg is a reference pressure.  The porosity and
permeability may then be expressed as functions of €, such
as

€y = Q

é(p)[9] = ¢o + cy(p — po), (8)
k(p) = ko exp (cx(p — po)) , (9)

with ¢y and kg the reference porosity and permeability and
cg and ¢ small coefficients. Substituting these relations
into the flow equation converts it into a nonlinear diffusion
equation, in which the diffusivity depends on pressure. This
nonlinearity can modify the shape of early-time transients
and introduce asymmetry between drawdown and buildup
responses.

For multiphase near-wellbore flow, the governing equa-
tions involve separate conservation laws for each phase,
coupled through saturation constraints and relative per-
meability and capillary pressure relationships [10]. If S,
denotes the saturation of phase «, p, its density, and v,
its Darcy velocity, the mass balance of phase « takes the
form

0
¢§ (PaSa) +V - (pava) = qa, (10)
with g, a source term. The Darcy velocity is given by [11]

ke
Ha

Vo = (Vpa = pag), (11)
where k.4(Sy) is the relative permeability and p, is the
phase pressure. In the immediate vicinity of the well,
capillary pressures, relative permeability hysteresis, and
dynamic saturation effects can lead to strong coupling
between pressure and saturation transients, which in turn
influence measured wellbore signals.

Dimensionless variables facilitate analysis of near-
wellbore phenomena by separating geometric and property
effects from operational conditions. A common choice in-
troduces a dimensionless radius rp = r/ry,, a dimension-
less time tp proportional to kt/(¢ucir?), and a dimen-
sionless pressure scaled by a characteristic pressure drop.
The diffusion equation then takes a normalized form such
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Table 6: Numerical discretization features for near-wellbore simulations

Aspect Options

Comment Typical choice

Spatial scheme
Time integration
Grid design
Nonlinearity solve
Linear solver
Time-step control

Newton / Picard

Finite volume / finite difference
Explicit / implicit / adaptive
Uniform / logarithmic radial

Direct / Krylov + preconditioner
Fixed / error-based adaptivity

Finite volume
Fully implicit
Logarithmic

Conservative radial flux
Stability vs. cost
Early-time resolution
Convergence control
Sparse systems
Captures fast transients

GMRES + ILU
Adaptive

Table 7: Machine-learning-based inversion ingredients

Element Role Examples Notes

Input vector y Observed transients Pw(t), T(t), rates Time-series structure
Target 6 Near-wellbore parameters k, S, C,, Low to moderate dimension
Model f,, Learn inverse map CNN, RNN, transformers Sequence-aware networks
Loss £ Training objective MSE + regularization May be dimensionless

Uncertainty layer

Training data Supervision source

Quantify posterior spread

Supports risk-aware use
Needs realistic noise

Bayesian NN, ensembles
Synthetic simulations

as

Opp _ 1 9 ([12]@8”) : (12)

8tD D aTD 8rD

for the simplest case of constant properties and no sources
outside the wellbore. Extensions to include composite
regions, wellbore storage, and skin introduce additional
dimensionless groups, but the rescaled equations highlight
the similarity between systems that differ in absolute
scale yet share the same dimensionless parameters. This
similarity property is exploited extensively in both analytical
interpretation and data-driven modeling of transient near-
wellbore responses.

Analytical characterization of transient near-wellbore
pressure and temperature behaviour

Analytical and semi-analytical solutions for near-wellbore
flow provide valuable insight into the sensitivity of early-
time transients to various physical mechanisms. For single-
phase radial flow with constant properties in an infinite
reservoir, the classical line-source solution describes the
pressure response at radius r to a constant rate production
or injection at the well [13]. In dimensionless form, the
pressure at the wellbore under constant rate production
can be expressed as an integral involving exponential and
logarithmic terms. When wellbore storage is included, the
observed sandface pressure becomes a convolution of the
formation response with the storage behaviour, leading to
characteristic early-time slopes in log-log plots of pressure
and its derivative.

One convenient representation of wellbore storage effects
is obtained in the Laplace domain. Let pp(s) denote the
Laplace transform of the dimensionless wellbore pressure,
with s the Laplace variable. For a unit rate drawdown test
in a homogeneous reservoir with dimensionless wellbore
storage C'p and skin factor S, the Laplace-space solution

can be written in compact form as

1 1

Pols) = 315 Cps (,8)° (13)
where f(s,S) encapsulates the formation response, in-
cluding the effect of skin. Inverse Laplace transforma-
tion vyields the time-domain pressure, and the derivative
of pp with respect to Intp reveals distinct regimes such
as the early wellbore storage regime, the intermediate ra-
dial flow regime, and the late-time boundary regime. Al-
though closed-form expressions for f(s,S) are not always
available, approximations can be derived for specific time
ranges, allowing asymptotic analysis of the derivative be-
haviour [14].

The presence of a composite near-wellbore zone modifies
the early-time pressure response. For a two-region system
with inner permeability ks and outer permeability k., the
effective skin factor at late times can be related to the log
ratio of permeabilities and the thickness of the altered zone.
However, the transient behaviour at intermediate times
depends on the diffusivity contrast between regions and
on the storage characteristics of each region. Analytical
solutions for such systems can be constructed using Laplace
transforms and continuity conditions at the interface r =
rs. In many cases, the wellbore pressure response is
expressed as an integral involving Bessel functions and
exponentials.  For interpretive purposes, approximate
expressions that capture the leading-order behaviour in
short-time and intermediate-time limits are often sufficient.

Temperature transients provide complementary informa-
tion about near-wellbore processes. In a simple model
where a fluid of temperature T, is injected into a for-
mation at initial temperature Ty, the temperature at the
sandface evolves due to the competition between advective
transport of the injected fluid, conductive heat exchange
with the formation, and heat capacity of the combined

Newton with damping
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Figure 2: Structure of the governing equations linking the wellbore storage ordinary differential equation, the radial reservoir pressure
diffusion equation, sandface coupling conditions, and optional thermal or poroelastic extensions, together with auxiliary composite-skin

and multiphase formulations.

fluid-rock system. For constant injection rate and negligi-
ble variation of fluid properties with temperature, the en-
ergy equation in radial coordinates reduces to a form that
can be linearized and solved using transforms analogous to
those used for pressure [15]. The resulting solutions show
that the early-time temperature change near the wellbore
is dominated by the entering fluid, while at longer times
conductive exchange and radial dispersion smooth the tem-
perature profile.

Coupled pressure and temperature transients can reveal
phenomena such as the Joule-Thomson effect and non-
isothermal compressibility. When pressure changes occur
rapidly near the wellbore, fluid temperature may change
even in the absence of net heat exchange with the
surroundings. In such cases, the energy equation includes
source terms proportional to the time derivative of
pressure, and analytical solutions must account for the
coupling between the pressure diffusion equation and the
energy balance. For small departures from an initial state,
linearized models can be used in which temperature is
expressed as a convolution of the pressure rate with a kernel
determined by thermodynamic properties and formation
characteristics. This convolution structure suggests that
pressure and temperature measurements together can
improve identifiability of near-wellbore properties compared
to pressure alone [16].

Another important analytical avenue concerns non-
Darcy flow and inertial effects in high-rate or gas-
dominated wells. The Forchheimer correction introduces
a quadratic term in the relationship between pressure
gradient and velocity, leading to a modified flow law of
the form
I
k

with B an inertial coefficient.

—Vp = =v + Bp|v]v, (14)

Substitution into the

mass conservation equation produces a nonlinear partial
differential equation in which the effective diffusivity
depends on the magnitude of the velocity. Analytical
solutions in closed form are generally not available, but
perturbation methods can be applied when the non-Darcy
term is small compared to the Darcy term [17]. Such
analyses indicate that non-Darcy effects steepen early-
time pressure gradients near the wellbore and can be
interpreted, in certain regimes, as an apparent additional
skin that depends on flow rate. Distinguishing this dynamic
skin from true mechanical damage or stimulation requires
careful consideration of rate dependence.

Dimensionless analysis plays a central role in classify-
ing transient near-wellbore behaviour. By introducing di-
mensionless groups for time, radius, wellbore storage, and
non-Darcy parameters, it is possible to construct regime
maps that delineate domains in which different physical
processes dominate. For example, the ratio of the charac-
teristic diffusion time in the skin region to that in the far-
field reservoir controls whether the altered zone appears as
a distinct transient feature or only as a static skin in the
observed signal [18]. Similarly, a dimensionless number
involving the Forchheimer coefficient, rate, and permeabil-
ity indicates the importance of inertial effects. Analytical
approximations in each regime help to explain qualitative
features observed in simulated or measured pressure deriva-
tives, such as humps, inflection points, or changes in slope.

Temperature-based dimensionless groups involve ratios
of conductive and advective time scales as well as
the relative importance of Joule—=Thomson heating or
cooling. In cases where temperature is largely controlled by
advective transport of injected fluid, the transient sandface
temperature behaves approximately as a plug-flow signal
with smoothing due to axial dispersion. When conductive
exchange dominates, the temperature response reflects the
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diffusion of a thermal front into the formation. Analytical
solutions for these limiting cases can be used to calibrate
semi-empirical models that interpolate between regimes,
enabling approximate interpretation of temperature logs in
terms of near-wellbore permeability and thermal properties
[19].

The analytical characterization, while based on simplify-
ing assumptions, establishes patterns and structures that
guide both numerical simulation and data-driven interpre-
tation. It identifies which combinations of parameters con-
trol key features of the response and how these features
move or deform when properties change. This understand-
ing is essential for constructing parameterizations for inver-
sion, designing tests that maximize sensitivity to parame-
ters of interest, and evaluating whether certain parameters
are practically identifiable from available data. The analyt-
ical framework also informs the construction of synthetic
data sets used to train and validate machine-learning mod-
els, by focusing attention on parameter ranges and regimes
that are most relevant to near-wellbore phenomena in re-
alistic wells.

Numerical simulation and reduced-order modeling of
near-wellbore dynamics

Analytical solutions for near-wellbore flow and transport
are limited in their ability to represent the full complexity
of real wells, which may involve heterogeneous formations,
complex completion geometries, multiphase flow, and non-
linear property variations with pressure and temperature.
Numerical simulation provides a more general tool for re-
solving these complexities, at the cost of increased com-
putational effort [20]. For transient near-wellbore phenom-
ena, numerical schemes must capture steep gradients and
short time scales near the well while maintaining stability
and accuracy over longer periods and larger spatial do-
mains.

Finite volume and finite difference methods are com-
monly used to discretize the radial diffusion equation and
its generalizations. In a radial grid with cell centers at radii
r; and control volumes defined between midpoints, the dis-
cretized diffusion operator for a cell ¢ may be expressed in
conservative form as

n—+1 n
pi —pi 1 n+1 n+1 n+1
Picui At = Fi+1/2 - Fi—l/z +aq;", (15)
1

where At is the time step, p’ is the pressure at time level
n, and F;ﬁ% denotes the radial flux between cells 7 and
i+ 1 evaluated at time n+ 1. For a homogeneous medium

with constant k and p, the flux can be approximated as
n+1 n+1
el kpiiy —p;

12 = Tit1/2T T

16
B Tyl — T ( )

with 7;11/o a suitably defined interface radius. Implicit
time discretization, as indicated by the use of n+ 1 in the
fluxes, is generally preferred for stability, especially when
time steps vary or when strong nonlinearities are present
[21].

The coupling to the wellbore storage equation introduces
an additional algebraic or differential equation at the
innermost grid block. The radial flux from the reservoir
into the well is computed from the discretized flux at the
wellbore, and the wellbore pressure is either identified with
the pressure in the first grid block or connected via an
additional well index relation. The combined system at
each time step can be written in matrix form as

Ap"tl =b, (17)

where p™*! collects the pressures in all grid blocks and
possibly the wellbore pressure. The matrix A is sparse,
with a banded or near-banded structure in simple radial
grids. For more complex geometries or coupled multiphase
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systems, the structure can be more intricate, but it remains
sparse.

Temporal discretization must resolve the characteristic
diffusion time scales in the near-wellbore region [22]. A
local diffusive time step criterion can be expressed as

¢z‘Ct,iATi2
ki/pwi

with 6 a parameter controlling accuracy. Fully implicit
schemes relax strict stability limits but large time steps can
still degrade accuracy in early-time transients. Adaptive
time stepping that refines time steps during rapid changes
in pressure or rate and coarsens them during slowly varying
phases provides a compromise between resolution and
computational efficiency [23].  Error estimators based
on differences between first-order and higher-order time
integration schemes, or on residual norms of the discretized
equations, guide such adaptivity.

When multiphase flow, thermal effects, or poroelastic-
ity are included, the governing equations form a coupled
nonlinear system for pressures, saturations, temperatures,
and possibly displacement fields. Newton-type methods
are commonly used to solve these systems at each time
step. Linearization yields Jacobian matrices that incorpo-
rate derivatives of fluxes and source terms with respect to
primary variables. The resulting linear systems are typi-
cally solved using iterative Krylov subspace methods with
preconditioning tailored to the block structure of the prob-
lem. In the near-wellbore context, strong coupling between
pressure and saturation, or between pressure and tempera-
ture, can make convergence sensitive to time-step size and
initial guesses, further motivating adaptive strategies [24].

At <0 (18)

Direct numerical simulation of the full near-wellbore dy-
namics for every candidate parameter set is computation-
ally intensive and not always feasible for real-time inter-
pretation or control. Reduced-order modeling offers a way
to approximate the behaviour of the full system using a
lower-dimensional representation constructed from a set of
basis functions or snapshots. One common approach is
projection-based model reduction, in which the state vec-
tor p(t) is approximated as

p(t) ~ Vz(t),

where V is a matrix whose columns are basis vectors and
z(t) is a vector of reduced coordinates. The basis vectors
may be obtained from proper orthogonal decomposition
of simulated state trajectories or from Krylov subspace
methods. Substitution into the full-order equations and
projection onto the reduced space results in a system of
reduced dimension for z(t) that can be integrated more
efficiently.

Reduced-order models must retain sufficient fidelity
in the near-wellbore region to accurately capture early-
time transients. This requirement often motivates local
enrichment of the basis near the well, or separate
basis sets for near-wellbore and far-field regions [25].
Parameter dependence also poses challenges, as the basis
constructed at one parameter set may not represent
dynamics at another. Parameterized model reduction
strategies, in which the basis adapts to changes in
permeability, compressibility, or other parameters, are
therefore of interest. Techniques such as interpolation of
reduced-order models or global bases spanning a range of
parameter values can be used, but they increase the offline

(19)
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Figure 5: Integration of near-wellbore modeling into well control and formation evaluation: control actions at the surface propagate
through the wellbore and near-wellbore region, measurements are fused in estimators that update states and parameters, and the resulting
information feeds both operational decisions and interpretation workflows under explicit risk and constraint considerations.

computational effort required to construct the models.

Another class of reduced models is based on surrogate
descriptions of the input-output behaviour of the system
rather than its internal state. For near-wellbore phenom-
ena, the inputs may include prescribed flow rates or choke
settings, and the outputs are the measured pressures and
temperatures at the wellbore. The mapping from inputs to
outputs can be approximated by parametric transfer func-
tions, autoregressive models with exogenous inputs, or non-
linear regressions [26]. For example, a discrete-time repre-
sentation of the wellbore pressure response might have the
form

poli] =S axpuln — K]+ bealn — k] + eln], (20)
k=1 k=1

where ¢[n] is the rate at time index n, a; and by are
coefficients, and e[n] is a residual term. The coefficients
may depend on underlying formation properties, so the
model can serve both as a predictive tool for simulation
and as a component of an inversion algorithm.

Hybrid approaches that combine physics-based reduced-
order models with data-driven components are well suited
to near-wellbore applications. For instance, the structure
of the diffusion equation dictates general features of the
pressure response, such as smoothness and causality, while
more complex or uncertain aspects, such as rate-dependent
skin or nonlinear relative permeability curves, can be
represented by data-driven corrections [27]. This division
of labour allows the model to enforce physical constraints
where they are clear and to learn flexible mappings where
physics is less certain or too complex to model explicitly.

Numerical models are also crucial in generating synthetic
data sets for training and testing machine-learning-based
interpretation schemes. By sampling parameter spaces
that include variability in permeability, skin, wellbore stor-
age, relative permeability characteristics, and operational

controls, one can produce ensembles of transient responses
under various noise conditions. These synthetic data sets
must be constructed carefully to avoid biases, to reflect
plausible variability, and to ensure that the trained mod-
els generalize over the range of conditions expected in real
wells. Grid resolution and time-step choices in the numeri-
cal simulations directly impact the quality of the synthetic
data and therefore the performance of the learned models.

Machine-learning-based interpretation and probabilis-
tic inversion of transient responses
Data-driven methods offer a complementary route to in-
terpreting transient near-wellbore phenomena, particularly
when the mapping from measured signals to formation
properties is complex and not easily expressed in closed
form [28]. Machine-learning models can approximate the
inverse mapping from pressure and temperature time se-
ries, combined with operational inputs, to estimates of
permeability, skin, wellbore storage, or more detailed near-
wellbore descriptors. Such models are typically trained on
synthetic data generated by numerical simulations, though
they may also incorporate field data when available.
Consider a simplified setting in which the observable
data vector y consists of sampled pressure and temperature
values at the wellbore over a time window, while the
parameter vector 0 includes quantities such as permeability
k, skin factor S, storage coefficient C,,, and a small
number of shape parameters describing heterogeneity in
the near-wellbore region. The goal is to approximate a

mapping

D

= fu(y), (21)

where f,, is a parameterized function, for instance a neural
network with weights and biases collected in w. Training
data consist of pairs (y(*), O(i)) generated by sampling 8*)
from a prior distribution and computing the corresponding
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transient response using the numerical model.

The training objective is often defined as a mean-squared
error loss with regularization. For a batch of size N, the
loss function can be written as

1 & . 2 )
£w) = 3 Do [[2905 () — 69 + Al 22)

with A a regularization parameter. Optimization of L
with respect to w is typically performed using stochastic
gradient descent or its variants. The network architecture
can exploit the temporal structure of the data by using
one-dimensional convolutional layers, recurrent layers, or
attention mechanisms designed for sequence data [30].

To enhance generalization and robustness, it is useful to
work with dimensionless representations of both inputs and
outputs. Pressures, temperatures, and times can be scaled
using characteristic values derived from estimated ranges of
parameters or from early-time measurements. For example,
dimensionless time can be defined using an estimated
diffusivity, and dimensionless pressure may be formed using
a characteristic pressure drop. Such scaling reduces the
variability in the data and can allow a single model to be
applicable across wells and formations that share similar
dimensionless descriptions, even if their absolute scales
differ.

In addition to deterministic point estimates of 8, it is
often important to quantify uncertainty. A probabilistic
formulation seeks to characterize the posterior distribution
p(0 | y) given observed data. Bayesian approaches express
this posterior as proportional to the product of a likelihood
p(y | @) and a prior p(@). When the numerical model is
available, the likelihood can be approximated by assuming
additive observation noise, for example [31]

oy 10)cesp (~ 5oz Iy - 2OI) . (29)
where g(0) denotes the model-predicted data and o2
is a noise variance. Sampling from the posterior using
Markov chain Monte Carlo is usually too slow for real-time
applications, but approximate methods such as variational
inference or ensemble-based approaches can provide useful
estimates of uncertainty.

Machine-learning techniques can also be integrated
directly into the solution of the governing equations
through physics-informed neural networks [32]. In such
approaches, a neural network is used to approximate the
spatiotemporal pressure field p(r,t), and the loss function
includes terms that penalize violations of the differential
equations and boundary conditions. For example, a loss
function may include a residual term of the form

()Y oo

where p is the neural network approximation of p.
Minimization of the integral of R over sampling points

o 19

R= (¢Ct3t - ror
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in space and time, along with terms enforcing boundary
conditions and data fit, encourages the network to
represent physically consistent solutions. In a near-
wellbore context, physics-informed networks can be used
to interpolate sparse downhole measurements, to fill in
unmeasured regions of the domain, or to embed known
physics into a learning-based inversion [33].

Probabilistic machine-learning models such as Gaussian
processes or Bayesian neural networks provide another
route to uncertainty quantification. For instance, a Gaus-
sian process prior on the mapping from dimensionless time
to dimensionless pressure can capture smoothness assump-
tions and yield predictive distributions at unobserved times.
If the hyperparameters of the covariance function are them-
selves related to formation properties, fitting the Gaus-
sian process to observed transient data can indirectly esti-
mate those properties. However, the computational cost of
Gaussian processes scales poorly with the number of time
samples, so sparse approximations or structured kernels are
often needed for long time series.

An important consideration in machine-learning-based
interpretation is identifiability: not all parameters influence
the transient response in a distinguishable manner, espe-
cially in the presence of noise and limited test duration.
Sensitivity analysis, either based on numerical derivatives
of the model outputs with respect to parameters or on
variance-based methods, helps to identify which parame-
ters can be reliably inferred [34]. Machine-learning models
may be designed to focus on a subset of parameters that are
most influential and to treat others as nuisance variables
integrated over during training. This focus can improve
robustness and avoid overfitting to noise.

Validation of data-driven models requires evaluation on
synthetic and, when available, field data that are not
used for training. Statistical measures such as root-mean-
square error in parameter estimates, coverage probabilities
of confidence or credible intervals, and calibration of
predicted uncertainties provide quantitative assessment.
Because synthetic training data inevitably reflect modeling
assumptions, discrepancies between synthetic and field
responses must be examined carefully [35]. Domain
adaptation techniques, in which the model is fine-tuned
using limited field data or adjusted to account for
systematic shifts in the data distribution, can mitigate
some of these discrepancies.

Overall, machine-learning-based interpretation and prob-
abilistic inversion offer flexibility in handling complex near-
wellbore phenomena and integrating diverse data types.
Their performance depends critically on the quality and
representativeness of training data, the incorporation of
physical constraints, and rigorous assessment of uncer-
tainty. These considerations are particularly important
when such models are used to support real-time well con-
trol decisions, where misinterpretation of transient signals
may have operational consequences.
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Near-wellbore modeling for well control and opera-
tional decision-making

Well control relies on timely detection and mitigation of
undesired events such as influx of formation fluids into
the wellbore, loss of circulation, and unstable flow regimes
that can threaten safety or reduce operational efficiency.
Transient near-wellbore phenomena are central to these
processes, as they dictate how quickly pressure changes
propagate, how the wellbore fluid column responds to
formation interactions, and how control actions at the
surface influence downhole conditions [36]. Modeling
these dynamics provides a basis for designing detection
algorithms, predicting the outcomes of control actions, and
assessing margins of safety.

One useful representation of near-wellbore dynamics for
control purposes is a reduced-order state-space model. By
linearizing the governing equations around an operating
point, it is possible to express the evolution of deviations
in pressure and rate as a system of linear differential
equations. For example, small perturbations dp,(t) in
wellbore pressure and d¢(t) in flow rate may satisfy

d
%(h’w(t) = a110py (1) + a120q(t) + di(2), (25)

%53:@) — A,5x(1)[37) + Buog(t) + da(t),  (26)

where §z(t) encodes additional state variables representing
near-wellbore storage and pressure distribution.  The
matrices a11, a12, A, and B, are obtained by linearizing
the diffusion and wellbore equations, and the perturbation
terms d;(t) and d,(¢) represent unmodelled disturbances.
Discretization in time leads to a model suitable for use in
model predictive control or state estimation schemes such
as Kalman filters.

Choke settings, pump rates, and other controllable
inputs determine boundary conditions for the near-wellbore
model. In a simple formulation, the surface-controlled
rate gs, surf(t) appears directly in the wellbore storage
equation and indirectly influences the formation pressure.
Control strategies may seek to regulate wellbore pressure
within prescribed limits, to maintain a desired drawdown
profile, or to respond to detected anomalies in measured
signals. The performance of such strategies depends on
the accuracy with which the model represents near-wellbore
dynamics and on the robustness of the control design to
model uncertainties [38].

Detection of influxes or losses often relies on comparing
measured pressure and rate signals with model predictions
under normal conditions.  Deviations that cannot be
explained by expected operational changes may indicate
that formation fluids are entering or leaving the wellbore
in an unplanned manner. A near-wellbore model that
accounts for storage, skin, and temperature-dependent
properties can reduce false alarms by providing a more
accurate baseline response. For instance, a step change in
choke opening produces a characteristic transient pressure
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response at the sandface, whose shape depends on near-
wellbore parameters. If the observed response deviates
significantly from the modeled baseline in a manner
consistent with additional inflow or outflow, this may
trigger an alarm [39].

Statistical change detection methods can be built on
residuals between measured and predicted signals. Let
Pw(t) be the model-predicted pressure and pTe®(t) the

w
measured pressure. The residual r(t) = pn®@(t) — P, (t)

w

can be monitored using thresholds or more sophisticated
statistics that account for noise and model uncertainty.
Sequential probability ratio tests or cumulative sum
techniques can be adapted to operate on these residuals.
The choice of thresholds involves a trade-off between false
positive and false negative rates, and near-wellbore models
help by reducing systematic biases and making residuals
more stationary under normal conditions.

Machine-learning models trained on transient responses
can also support well control by providing fast evaluations
of expected pressure or temperature under different control
actions. For example, a surrogate model may predict the
sandface pressure response to a proposed change in choke
opening or pump rate, allowing operators to assess whether
pressure limits are likely to be violated. Such surrogates
can be embedded in optimization routines that search
over control actions to achieve multiple objectives, such as
maximizing rate while maintaining pressure within bounds
and limiting the risk of reaching critical gradients near the
wellbore [40].

Uncertainty in formation properties and near-wellbore
conditions affects the reliability of control decisions. Prob-
abilistic models of near-wellbore dynamics allow computa-
tion of distributions over future pressures and flows un-
der candidate control strategies. These distributions can
be used to evaluate probabilities of exceeding safety lim-
its or triggering undesired events. Control policies that
manage risk, such as those based on chance constraints or
robust optimization, can be formulated in this probabilistic
setting. The integration of transient near-wellbore mod-
eling, probabilistic inversion of formation properties, and
risk-aware control thus forms a coherent framework, even
though each component carries its own approximations.

Operational constraints, such as limits on the rate of
change of choke positions or delays in measuring downhole
pressures, must be incorporated into the control design
[41]. Delays are particularly relevant when only surface
measurements are available and must be interpreted
through the model to infer downhole conditions. The
near-wellbore model provides a mapping from surface
pressures and rates to sandface pressures and flows,
but this mapping is subject to uncertainty and latency.
State estimation methods, including extended or ensemble
Kalman filters, can combine model predictions with
available measurements to estimate the hidden states and
parameters in real time, thereby improving the basis for
control actions.
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In addition to safety considerations, near-wellbore mod-
eling can inform operational choices that influence forma-
tion evaluation. For example, the design of drawdown and
buildup sequences during testing can be optimized to max-
imize sensitivity to parameters of interest while respecting
well control constraints. By simulating candidate test se-
quences with the near-wellbore model and evaluating the
resulting Fisher information matrix or related measures of
parameter sensitivity, one can identify test designs that
are more informative [42]. This coupling between con-
trol and evaluation illustrates how near-wellbore modeling
serves both operational and interpretive roles.

Formation evaluation and parameter estimation from
transient near-wellbore data
Formation evaluation traditionally combines petrophysical
logs, core measurements, and well test analysis to infer
permeability, porosity, fluid properties, and other reser-
voir characteristics. Transient near-wellbore data, includ-
ing short-time pressure and temperature responses to con-
trolled flow rate changes, provide additional information
that can refine these estimates, particularly in the vicinity
of the well. A central challenge is to formulate parameter
estimation procedures that account for the complex, cou-
pled nature of the near-wellbore system while remaining
computationally feasible and robust to uncertainties.

Inverse problems for near-wellbore parameter estimation
are commonly posed as optimization problems in which
the objective is to minimize the misfit between observed
and modeled data. Let d° represent a vector of observed
pressures and temperatures at discrete times, and let d(0)
denote the corresponding predictions of the near-wellbore
model for a parameter vector 8. A least-squares objective
function takes the form

7(0) = 5 (d(6) —a*) W (d(6) —a*),  (27)

where W is a weighting matrix, often chosen as the inverse
of the noise covariance matrix when known. Minimizing
J (@) with respect to 0 yields parameter estimates that best
fit the data in the weighted least-squares sense, subject to
the validity of the model and noise assumptions.

Gradient-based methods are efficient for solving such op-
timization problems when the dimension of @ is moderate
and derivatives of d(@) with respect to parameters can be
computed accurately. Adjoint techniques are particularly
useful in this context. By deriving and solving the adjoint
equations associated with the near-wellbore model, one can
evaluate the gradient VgJ at a cost comparable to that
of one or a few forward simulations, independent of the
number of parameters. This efficiency enables the use of
second-order or quasi-Newton methods that can converge
rapidly to local minima [43].

The ill-posed nature of inverse problems necessitates
regularization. Prior information about parameters, such
as expected ranges of permeability or skin factors, can
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be encoded through penalty terms added to the objective
function. For instance, a quadratic regularization term

3
Jreg(6) = 5 116 — 6ol ; (28)

penalizes deviations from a prior mean 6y with strength
controlled by . More complex regularization, such
as sparsity-promoting norms or structural constraints
reflecting expected relationships between parameters, can
also be employed. These choices influence the stability of
the inversion and the balance between fitting the data and
adhering to prior knowledge [44].

Statistical assessment of parameter estimates can be
based on linearized approximations of the inverse problem.
Near an estimated parameter vector 0, the covariance of
the estimation error may be approximated by the inverse
of the Fisher information matrix

I=G'WG, (29)

where G is the sensitivity matrix with elements G;; =
0d; /00, evaluated at 6. The eigenvalues and eigenvectors
of I reveal directions in parameter space that are well or
poorly constrained by the data. Parameters associated
with small eigenvalues of I are difficult to estimate
reliably, and attempts to infer them may lead to overfitting
and unstable solutions. This analysis can inform the
choice of parameterization, suggesting simplifications or
aggregations when necessary.

Incorporating near-wellbore transients into formation
evaluation requires integration with other data sources.
For example, core and log measurements provide local
estimates of porosity and permeability, which can be used
as priors in the inversion. Seismic data may inform
larger-scale heterogeneity patterns that affect the far-
field pressure response. Joint inversion frameworks that
combine near-wellbore transients with other measurements
can, in principle, provide more coherent estimates, but
they also increase model complexity and computational
cost [45]. Careful selection of which parameters to treat
as global (shared across data sets) and which to treat as
local (specific to the near-wellbore region) is important for
tractable formulations.

Short-time transients are particularly sensitive to very
near-wellbore properties, such as the permeability and
thickness of damaged or stimulated zones. However, these
properties may vary around the circumference of the well
and along its length, leading to anisotropic and three-
dimensional effects. Representing such variability in an
axisymmetric model requires effective parameters that av-
erage over azimuthal variations. In some cases, deviations
from axisymmetry manifest as irregularities or azimuthally
dependent signatures in distributed measurements, but
these are difficult to resolve with limited data [46]. Pa-
rameterizations that capture the principal effects of het-
erogeneity with a small number of effective parameters are
therefore often preferred, even though they cannot repre-
sent all details.
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The role of temperature data in formation evaluation
continues to expand with the increased availability of
distributed temperature sensing. Transient temperature
profiles along the well can reveal flow contributions from
different zones, phase changes, and near-wellbore thermal
properties. Inverse methods that jointly consider pressure
and temperature data face additional challenges because
the energy equation introduces further parameters, such
as effective thermal conductivities and heat capacities.
Nevertheless, joint inversion can reduce ambiguity for
some parameters, as pressure and temperature respond
differently to changes in properties.  The design of
observation strategies that exploit this complementarity is
an active area of development.

Under operational constraints, data acquisition for
formation evaluation must coexist with production or
injection activities. Specialized tests, such as pressure
pulses or step-rate tests, are designed to produce transient
responses that are informative about specific parameters
while staying within safe operating envelopes.  Near-
wellbore modeling supports the design of such tests
by predicting their impact on wellbore and formation
conditions and by quantifying expected sensitivities. The
interplay between test design, parameter identifiability,
and operational risk underscores the need for integrated
approaches to formation evaluation that use transient
near-wellbore phenomena as one of several complementary
sources of information.

Conclusion

Transient near-wellbore phenomena arise from the interplay
of fluid flow, energy transport, and mechanical effects
in the immediate vicinity of a well. They are encoded
in pressure, temperature, and flow-rate signals measured
at the wellbore and offer opportunities for improved well
control and formation evaluation, while also introducing
complexities in interpretation [47].  This work has
outlined a mathematical and computational framework
for modeling these phenomena, explored analytical and
numerical approaches to characterizing their behaviour,
and discussed data-driven and statistical techniques for
interpreting the resulting transients.

Starting from conservation laws in cylindrical coordi-
nates, the analysis considered single-phase and multiphase
flow, thermal coupling, and poroelastic effects, highlight-
ing how each modifies the near-wellbore pressure and tem-
perature responses. Analytical solutions and asymptotic
analyses help identify dimensionless groups and regimes
in which particular mechanisms dominate. Numerical dis-
cretization schemes, combined with wellbore storage mod-
els, enable simulation of more complex configurations that
include heterogeneity, nonlinear property variations, and
operational controls. Reduced-order models and surrogates
provide computationally efficient approximations suitable
for use in interpretation and control.

Machine-learning-based methods extend the interpretive
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toolkit by approximating inverse mappings from transient
data to near-wellbore parameters and by quantifying un-
certainties [48]. The success of these methods depends
on careful construction of synthetic training data, integra-
tion of physical constraints into learning architectures, and
rigorous validation against independent data. Probabilis-
tic formulations and sensitivity analyses clarify which pa-
rameters can be reliably inferred and which remain weakly
constrained, informing both parameterization choices and
expectations about the level of detail attainable from tran-
sient data.

In well control applications, near-wellbore models sup-
port the design of detection algorithms, control strategies,
and test protocols that respect safety constraints while
making use of available information in transient signals.
For formation evaluation, they offer a means to refine esti-
mates of local properties, particularly in damaged or stim-
ulated zones, and to integrate pressure and temperature
data with other measurements. The overall picture is one
in which transient near-wellbore phenomena are neither ne-
glected nor overemphasized, but treated as a component
of a broader modeling and interpretation framework that
explicitly accounts for uncertainties and limitations. Con-
tinued development of models, numerical methods, and
data-driven techniques, together with increased availabil-
ity of high-resolution measurements, is expected to grad-
ually improve the practical use of near-wellbore transients
in both operational and evaluative contexts [49].
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