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Abstract

Enterprise analytics platforms expose shared pools of compute,
memory, and storage resources to heterogeneous workloads
such as interactive queries, streaming pipelines, and batch jobs.
These workloads exhibit strong non-stationarity due to diurnal
patterns, business events, and evolving user behavior, which
makes static or rule-based resource management brittle and of-
ten inefficient. At the same time, enterprises impose service
level agreements on latency, throughput, and availability that
need to be satisfied under cost and energy constraints. Con-
ventional autoscaling controllers rely on local metrics and hand-
tuned thresholds, and they often treat the platform as a mono-
lithic system, ignoring the spatial structure of clusters and the
coupling between tenants. Multi-agent reinforcement learning
provides a way to learn adaptive policies from interaction, while
swarm coordination offers a decentralized mechanism for align-
ing behavior across large agent populations. This paper studies
dynamic resource provisioning in enterprise analytics platforms
through a swarm-coordinated multi-agent reinforcement learn-
ing formulation. The platform is modeled as a set of interact-
ing resource pools, each controlled by an agent that observes
local performance signals and takes scaling actions. Swarm co-
ordination mechanisms propagate aggregate load and conges-
tion information across agents using lightweight neighborhood
communication, which reduces oscillations and improves global
constraint satisfaction without centralizing the control logic. A
linear model of resource consumption and performance is inte-
grated into the learning process to structure value functions and
constrain exploration. The study investigates stability, scalabil-
ity, and empirical behavior of the proposed framework across a
range of workload patterns, highlighting trade-offs between re-
sponsiveness, resource utilization, and service level adherence.

Introduction

Enterprise analytics platforms combine data warehousing,
stream processing, and large-scale batch computation into
a single environment that serves many teams and business
units [1]. Typical deployments rely on container orches-
tration systems or virtualized clusters, where nodes host
multiple services and query engines. Workloads in such
platforms range from latency-sensitive dashboard queries
to long-running model training jobs, and their arrival pro-
cesses can exhibit strong burstiness driven by human activi-
ties, external events, and automated data pipelines. These
characteristics create a persistent tension between over-
provisioning resources to protect performance and under-
provisioning to reduce infrastructure cost and energy con-
sumption [2].

Dynamic resource provisioning aims to adjust allocations
of CPU, memory, and I/O capacity in response to observed
load, while satisfying service level objectives on latency,
throughput, and error rates. Classical control techniques
and heuristic autoscaling policies use metric thresholds,
moving averages, or simple predictive models to decide
how many replicas of a service should run in each time
window. While such mechanisms are relatively simple to
deploy, they depend heavily on manual tuning, and their
parameters often need continual adjustment as workloads
and hardware evolve [3]. Moreover, many heuristics treat
each service or pool in isolation, which can lead to resource
contention, synchronized oscillations, and inefficient use of
shared capacity across the cluster.

Reinforcement learning offers a way to adapt resource
management policies by optimizing long-run cost functions
derived from operational metrics such as response time,
queue length, and infrastructure expenditure. In a
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reinforcement learning formulation, a controller observes
the state of the platform, selects provisioning actions, and
receives feedback through a reward signal that reflects
both performance and cost. However, enterprise analytics
platforms are distributed systems with many control
points and partial observability [4]. A purely centralized
controller faces scalability and robustness challenges, while
independent learning agents risk converging to conflicting
behaviors that degrade global performance and violate
constraints.

Multi-agent reinforcement learning extends single-agent
formulations to settings where multiple decision makers
interact in a shared environment. Each agent observes
a subset of the global state and takes actions that
influence both its own performance and that of others
[5]. This creates a stochastic game in which agents
adapt their policies based on local signals and possibly
limited communication. For large clusters, a multi-agent
perspective is natural: each resource pool or service group
can be controlled by an agent that reasons about its
local workload and neighbors. Yet, without additional
coordination mechanisms, multi-agent learning can suffer
from non-stationary interactions, slow convergence, and
unstable policies.

Swarm coordination provides a complementary paradigm
in which simple local rules and exchange of low-dimensional
signals produce coherent global behavior across many
agents [6]. Originally studied in the context of biologi-
cal swarms, ant colonies, and bird flocks, swarm-inspired
algorithms use ideas such as virtual pheromone fields,
attraction-repulsion dynamics, and consensus protocols on
sparse graphs. These mechanisms can be embedded into
multi-agent reinforcement learning to regularize policies,
propagate congestion information, and align agents toward
globally consistent resource configurations, while preserv-
ing decentralized control and communication.

This paper formulates dynamic resource provisioning
in enterprise analytics platforms as a swarm-coordinated
multi-agent reinforcement learning problem with an explicit
linear model of resource and performance dynamics [7].
The platform is represented as a set of nodes or pools,
each managed by an agent that selects scaling actions
based on local observations and swarm signals aggregated
from neighbors. A linear approximation of how allocations
influence latency and queue lengths is integrated into the
value function representation and reward design, which
shapes exploration and supports stability analysis. The
study examines how swarm coordination interacts with
multi-agent learning across different workload regimes,
focusing on metrics such as service level violation rates,
aggregate resource usage, and convergence behavior of the
learned policies [8].

The remainder of the paper is organized as follows [9].
The next section describes the system model for enterprise
analytics platforms, including the workload representation,
resource abstraction, and Markov game formulation.

A subsequent section introduces the swarm-coordinated
multi-agent reinforcement learning framework and its value
function structures. The following section develops a linear
resource provisioning model and analyzes its integration
with the learning process [10]. The experimental section
evaluates the behavior of the framework under synthetic
and trace-driven workloads. The paper concludes with a
discussion of limitations and potential extensions.

System Model for Enterprise Analytics Platforms
The enterprise analytics platform is modeled as a cluster
composed of a finite set of nodes, each hosting containers
or virtual machines that run analytical engines, query
coordinators, stream processors, and auxiliary services.
The cluster is partitioned into logical resource pools
corresponding to tenants, application domains, or service
tiers [11]. Each pool aggregates a subset of nodes and
exposes a capacity vector that describes the total compute,
memory, and |/O bandwidth available to workloads
assigned to that pool. Within a pool, containers
implementing specific services are scheduled and scaled up
or down over time in response to observed load, but the
underlying capacity of the pool is treated as fixed over the
time horizons considered here.

Workloads are represented as flows of queries or jobs that
arrive to each pool according to stochastic processes [12].
For modeling purposes, arrivals are organized into traffic
classes based on latency sensitivity, resource intensity, and
priority. Within each class, jobs are processed by one
or more services modeled as queues. For an analytics
query engine, a query may traverse a front-end planner,
an execution engine, and possibly a storage layer. For a
stream processing pipeline, records pass through operators
arranged in a directed acyclic graph [13]. The model
aggregates these detailed paths into effective demand rates
and service times per pool, which depend on the resources
allocated to the corresponding services.

The state of the platform at discrete decision epochs is
described by a vector that aggregates the relevant perfor-
mance and utilization indicators. Let the dimension of this
state space be denoted by a positive integer interpreted as
the number of state components [14]. Typical state com-
ponents include queue lengths or smoothed arrival rates
per traffic class, observed latencies over a recent window,
and resource utilization fractions per pool. Since full ob-
servability of micro-level metrics is not required for control,
the state representation is constructed as a low-dimensional
summary sufficient for capturing the main dynamics rele-
vant to provisioning decisions.

To express the state more compactly, a vectorial notation
is adopted. At decision epoch indexed by a nonnegative
integer, the cluster-level state is denoted as [15]

xteR”

where each component corresponds to a particular metric,
such as average CPU utilization in a given pool or the
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Figure 1: High-level view of a multi-agent reinforcement learning swarm controlling dynamic resource provisioning in an enterprise analytics platform,
with user workloads translated into control actions under SLA and telemetry feedback.

Table 1: Workload profiles evaluated in the enterprise analytics platform

Workload type Query mix
OLTP-style
Batch ETL
Streaming analytics

Ad-hoc analytics

Large scans, joins

backlog of a specific latency class. The resource allocation
at time index is represented by a vector

UtERm

whose components represent scaling actions, for example
the change in the number of replicas of a service or the
adjustment of concurrency limits [16]. The feasible set of
allocations is constrained by the capacity of each pool and
global platform limits. This set is denoted

U={ueR™: Au<b,} (1)

where the matrix and vector encode capacity and policy
constraints. The inequalities are interpreted component-
wise [17].

The workload dynamics and their dependence on re-
sources are complex and nonlinear. For analytical tractabil-
ity and to support linear reinforcement learning structures,
a local linear approximation of the state evolution under
scaling actions is used. This approximation is constructed
around typical operating points of the platform and cap-
tures how queue lengths and utilization respond to small
increments or decrements in capacity [18]. The state evo-
lution is written as

Ti41 = A]}t + But + wy (2)

where the matrix represents the linearized endogenous
dynamics of the state, the matrix describes how actions

90% point, 10% range queries

Sliding-window aggregations
Complex joins, subqueries

Arrival pattern Latency SLA (ms)

Poisson, low burst 50

Periodic, every 30m 5000

High burst, diurnal 200
Heavy-tail inter-arrival 1000

influence the state, and the disturbance vector represents
exogenous fluctuations due to random arrivals and service
time variability. The disturbance is treated as a zero-mean
random vector with bounded second moments, reflecting
variability but not systematic drift in the approximation.

The service level performance of the platform is summa-
rized by a vector of metrics derived from the state [19]. For
instance, smoothed tail latencies, throughput per class, and
backlog thresholds can be represented as linear or affine
functions of the state. Let this performance vector be writ-
ten as

Yt = Cl‘t + d (3)

where the matrix selects and combines state components,
and the vector encodes constant offsets such as baseline
latencies that do not depend on current congestion [20].
Service level objectives typically prescribe upper bounds
on certain components of this performance vector, such as
maximum tolerable latency for interactive queries. These
constraints can be approximated as linear inequalities of
the form

Dy <e (4)
which, after substitution, becomes

DCx[21] <e—Dd (5)
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Figure 3: Markov decision process abstraction of dynamic resource provisioning, where the multi-agent policies map platform state into scaling actions

that drive cluster dynamics and generate rewards.

so that feasible regions of the state space associated with
acceptable performance are described by polyhedral sets.

The cost incurred at time index combines resource usage
and penalties for violating service level constraints. A linear
stage cost is adopted to maintain compatibility with linear
reinforcement learning formulations [22]. Let the cost be
given by

¢t = plug 4+ ¢ max(0, DCx; — e + Dd) (6)

where the cost vector captures per-unit infrastructure cost
of actions, and the vector captures penalty coefficients
for each constraint component. The max operator is
applied elementwise to represent violations, which are
zero when constraints are satisfied and positive otherwise
[23]. For the analysis in later sections, a piecewise linear
approximation can be employed to maintain the overall

linear structure while handling penalties.

Dynamic resource provisioning is formulated as a Markov
game in which multiple agents select components of the
action vector at each decision epoch. The global state
evolves according to the linear dynamics and disturbance
process [24]. Each agent corresponds to a particular
resource pool or service group and observes a local
projection of the global state. Let agent index range over

a finite set. Agent observes
o = H;x:[25] (7)

where the observation matrix selects the components of
interest to that agent, such as utilization and queue ratios
for services hosted in its pool. Agent chooses a local action

ui e U;
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and the joint action is the concatenation of all local actions,
subject to the global feasibility constraints encoded in the
set [26]. The individual contribution of agent to the stage
cost can be written as

¢, =piui+q 2 (8)

where the vectors and define local resource cost and
penalty coefficients, and the vector extracts relevant
violation signals associated with the services controlled by
agent. The total cost is the sum over agents, capturing
the aggregate infrastructure expenditure and performance
deviations across the platform.

Swarm-Coordinated Reinforcement
Learning

The Markov game described above is approached through
a multi-agent reinforcement learning framework in which
each agent learns a policy that maps its local observation
and possibly a low-dimensional swarm signal to a distri-
bution over local actions [27]. Time is discretized into
decision steps, and at each step every agent collects its

observation, computes a swarm-coordinated feature vector,

Multi-Agent

selects an action, and then receives a local cost signal. The
global state transitions according to the linear dynamics,
influenced by the joint action and exogenous disturbance.
Learning proceeds over many episodes or long-running in-
teraction traces until policies stabilize [28].

To represent policies and value functions, each agent
uses function approximation over a shared linear feature
space. Let the local state-action feature mapping for agent
be denoted by

¢' (o}, [29]u;) € R (9)

where denotes the feature dimension. The feature
vector may include normalized utilizations, queue ratios,
smoothed historical actions, and swarm signals aggregated
from neighboring agents. A linear action-value function for
agent is defined as [30]

Qp: (01, uy) = ¢' (0, ug) T 0"[31] (10)

where the parameter vector contains weights learned from
experience. The use of a shared feature mapping across
agents facilitates transfer of knowledge and supports
consistent behavior patterns across the cluster.
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Figure 6: Enterprise analytics deployment, with tenant workloads mapped to shared analytics engines and container clusters, where local swarm agents

attach to the cluster layer to drive elastic resource provisioning.

Table 2: Cluster configuration tiers for dynamic resource provisioning

Tier Node type
Ingest General purpose
Compute A Compute-optimized
Compute B Compute-optimized
Storage Memory-optimized
Control Lightweight

Swarm coordination is introduced through an auxiliary
set of swarm variables maintained by agents and propa-
gated along a sparse communication graph [32]. Let this
graph be described by a vertex set equal to the agent set
and an edge set representing communication links between
agents that share physical resources or are expected to
experience correlated workloads. Each agent maintains a
scalar or low-dimensional swarm state that summarizes its
local congestion or resource pressure. A simple example is a
congestion level computed from queue backlogs or latency
deviations. At each step, agents exchange swarm states
with neighbors and update their own swarm state using
a consensus-like rule [33]. For a scalar swarm variable at
agent, a typical update has the form

Zi =2+ Z wij (2] — 24) (11)
34]EN;

where the neighborhood set denotes the neighbors of agent
in the communication graph, the weights are nonnegative
and sum to one over neighbors for each agent, and
the scalar is a consensus step size. This update drives
the swarm variables toward a weighted average of local
congestion signals, enabling distributed propagation of
aggregate load information [35].

The swarm variables are integrated into the reinforce-
ment learning process through the feature mapping and
policy parameterization. For each agent, the feature vec-
tor includes its local swarm state and possibly smoothed
differences between its swarm state and those of its neigh-
bors. These features allow the action-value function to
capture how scaling decisions should react not only to local

vCPU per node

RAM per node (GB)

8 32
16 64
32 128

8 128

4 16

utilization but also to the congestion level of nearby pools
[36]. Policies are parameterized as stochastic mappings,
for example using a softmax distribution over a discrete
action set. Let the preference of agent for action given
observation and swarm state be written as

L0k, 24, [37]u’) = 1y (of, 24, [38]u’) T9)! (12)

where the vector is a policy feature mapping and the vector
is a parameter vector. The policy assigns probabilities via

exp(hl: (0}, 2{, [40]u’))
ZUEAi exp(h;ﬂ (O%v sz U))

i (u'lof, [39]2) = (13)
where the action set denotes the discrete scaling actions
available to agent, such as adding or removing a small
number of replicas [41].

The learning objective for each agent is to minimize its
expected discounted or average cost, subject to the coupled
dynamics induced by the joint policy of all agents. In the
discounted formulation with factor in the interval between
zero and one, the objective of agent is to minimize

o0
Ji(r) =E[[42] Y Bl (14)

t=0
where the expectation is taken with respect to the
trajectory distribution induced by the joint policy and
the dynamics. Since the environment is non-stationary
from the perspective of any single agent due to changing
policies of others, stability of learning is not guaranteed by
default. Swarm coordination modifies this interaction by
introducing structured coupling of policies through shared
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Table 3: Swarm coordination mechanisms explored in the control layer

Mechanism
Gossip-based averaging
Leader election
Neighborhood consensus
Broadcast heuristics
Hierarchical clustering

Communication pattern
Random peer-to-peer
Star topology
Ring lattice
Central controller
Multi-level aggregation

Update frequency

On major topology change

Coordination signal
Local load and capacity hints
Global scaling intent
Target utilization range
Hard upper/lower bounds
Cluster-level resource budgets

Every 5 steps

Every 10 steps
Every step
Every 20 steps

Table 4: Autoscaling baselines used for comparison

Method Description Coordination  Adaptivity
Static provisioning Fixed capacity per tier None None
Threshold-based scaling Rule-based CPU thresholds Local Low
Reactive autoscaler Built-in platform scaler Local Medium
Single-agent RL Monolithic RL controller Centralized High
Heuristic swarm Hand-crafted swarm rules Decentralized Medium
Proposed MARL swarm  Learned multi-agent swarm policy Decentralized High

features and consensus variables, which can reduce the
effective non-stationarity experienced by each agent [43].

To update the value function parameters, temporal-
difference methods with linear function approximation
are used. For agent, after observing a transition from
observation and local action to new observation and swarm
state with observed cost, the temporal-difference error
under a fixed target policy is computed as

6i[44] = ¢} + BV (0h 41, 241) — V' (0}, 2) (15)

where the value estimate is derived from the action-value
function via

Viohz) = D my(ulof, 2)Qpi(0fu)  (16)

u[45]€A;

The parameter update for the action-value function then
takes the form [46]

9§+1 = 92 - atéigi (17)

where the step size satisfies standard stochastic approxima-
tion conditions and the eligibility vector is given by the gra-
dient of the value estimate with respect to the parameters,
typically equal to a suitable combination of features [47].
This linear update preserves the stability properties associ-
ated with temporal-difference learning with linear function
approximation under appropriate conditions on the dynam-
ics and policies.

Policy parameters are updated in an actor-critic fashion
using approximate policy gradient estimates. For agent,
the gradient of the objective with respect to the policy
parameters can be approximated using the compatible
features that relate the derivative of the log-policy to the
action-value function estimates [48]. The policy parameter
update is expressed as

Vi =i — M (18)

where the estimate is built from samples of [49]
9 ~ Vs logmya(uylog, 27) Qe (0}, [50uy) — (19)

and the step size is chosen analogously to. The
presence of swarm variables in the policy features means
that the gradient implicitly depends on the states and
policies of neighboring agents through the consensus
mechanism. Nevertheless, since swarm updates are linear
and communication is local, the overall complexity of each
update step scales with the degree of the communication
graph rather than the total number of agents.

The communication graph and swarm update parame-
ters influence how quickly congestion and resource pressure
propagate across the platform [51]. A highly connected
graph leads to rapid averaging of swarm variables but can
blur local distinctions, while a sparse graph preserves local-
ity but may slow down coordination. The consensus matrix
associated with the weights can be used to analyze con-
vergence of the swarm variables. If this matrix is doubly
stochastic and the graph is connected, the consensus up-
date converges to a common value equal to the average of
initial swarm states [52]. The convergence rate is governed
by the spectral gap, which in turn depends on the topology.
By tuning the graph structure and weights, one can bal-
ance responsiveness and locality in the swarm-coordinated
resource provisioning policy.

Linear Resource Provisioning and Optimization

The reinforcement learning framework operates on top
of an underlying linear model of resource provisioning,
which provides structure for both analysis and feature
construction. The linear state evolution model combined
with the stage cost defines a linear-quadratic-like control
problem, except that the cost is piecewise linear and actions
may be constrained to a finite set of increments [53]. To
study the performance limits and to guide reward shaping,
it is helpful to consider a relaxed optimization problem
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Table 5: Service-level and cost metrics across autoscaling strategies

Method SLA violations (%)
Static provisioning 14.2
Threshold-based 9.8
Reactive autoscaler 7.3
Single-agent RL 4.5
MARL swarm (proposed) 21

Normalized cost Mean reaction time (s)

1.35 -

1.12 180
1.00 120
0.96 85
0.91 48

Table 6: Ablation study of swarm coordination components

Variant Disabled component
Full model None

No gossip Gossip-based averaging
No leader election Leader election

No neighborhood consensus  Neighborhood consensus
No global coordinator Global coordinator
Independent agents All coordination

in which actions are allowed to vary continuously within
the feasible set and disturbances are approximated by their
average effect.

In the relaxed setting, the goal is to find a stationary
allocation vector that minimizes the long-run average cost
subject to capacity and service level constraints. Under
the assumption that the linear dynamics stabilize around
a fixed point for constant actions, steady-state conditions
can be written as [54]

x* = Ax* + Bu* +w (20)

where the constant vectors denote the steady-state state,
action, and average disturbance. Solving for the steady-
state state gives

(I — A)a* = Bu* +w (21)

Assuming the matrix is invertible and stable in the sense
that its spectral radius is less than one, the steady-state
state is expressed as

r* = (I —A)~Y(Bu* + ) (22)

Service level constraints in steady state then become linear
inequalities in the action vector once this expression is
substituted into the performance equations [55].

The relaxed steady-state optimization problem can be
written as a linear program by introducing auxiliary vari-
ables for constraint violations and using linear approxima-
tions for performance metrics. For instance, one may de-
fine variables representing upper bounds on latency proxies,
and then impose constraints tying these variables to linear
combinations of the state. The objective is to minimize
a weighted sum of action magnitudes and constraint vi-
olation variables [56]. A simplified version of the linear
program takes the form

min ¢ u+r'ov (23)
st. Fu+Guv<h (24)

Impact on SLA (% change) Impact on utilization (% change)

0.0 0.0
+36.4 48
+19.7 +2.3
+24.1 -3.5
+41.8 +6.2
+58.9 -7.6

where the vector collects action costs, the vector contains
penalty coefficients, and the matrices and vector encode
capacity, steady-state, and service level constraints. The
variables represent slack or violation margins that allow
the linear program to remain feasible even when strict
constraint satisfaction is impossible under the given
average workload.

The optimal solution of the relaxed linear program
provides a baseline allocation that the reinforcement
learning agents can use as a reference [57]. In particular,
the solution indicates how resources should be distributed
across pools under average conditions to trade off cost
and performance penalties. Deviations from this allocation
can then be interpreted as responses to transient workload
fluctuations and stochastic variability. This interpretation
suggests a decomposition in which the action of each agent
is written as the sum of a baseline component derived from
the linear program and a corrective component generated
by the learned policy, which attempts to compensate for
short-term variations and prediction errors [58].

To integrate this structure into the multi-agent reinforce-
ment learning framework, features are constructed that en-
code both the deviation of the current allocation from the
baseline and the estimated marginal cost of resources im-
plied by the dual variables of the linear program. The
dual variables associated with capacity constraints can be
viewed as shadow prices for resource units in each pool,
indicating how the objective would change if capacity were
slightly increased. If these prices are approximated or pe-
riodically recomputed, they can be included in the feature
vectors to bias the learned policies toward actions that align
with the underlying linear optimization problem.

Consider an agent controlling a particular pool [59].
Let the scalar denote the shadow price of one unit of
CPU capacity in that pool, and similarly for memory and
[/O. The feature vector for this agent can be extended
to include terms such as the product of utilization and the
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Table 7: Key hyperparameters for training the multi-agent reinforcement learning swarm

Parameter Symbol Value Description

Discount factor ¥ Long-term reward weighting
Learning rate « 3 x10™*  Actor-critic optimizer step size
Target update rate T 0.005 Soft target network updates
Batch size B Experience replay batch size
Replay buffer size |D| Centralized experience buffer
Coordination loss weight Ac Strength of swarm regularization
Exploration temperature T Entropy-based exploration

corresponding shadow price, capturing the idea that scaling
decisions should depend both on how heavily resources are
used and on their marginal cost. In linear terms, if the
agent considers a small scaling action in CPU allocation,
the immediate change in the relaxed objective can be
approximated as [60]

A = iy, Ay, (25)
where the scalar represents the shadow price and the
scalar is the proposed change in CPU capacity. Similar
expressions apply to other resource dimensions [61]. These
approximations do not require exact dual solutions at every
decision step; rather, they provide directional guidance that
can regularize the learned policies.

Stability properties of the linear model are important
for ensuring that reinforcement learning does not drive
the system toward unstable configurations. The matrix
describing the endogenous dynamics should have a spectral
radius strictly less than one for the linear approximation to
be meaningful over extended horizons [62]. In addition,
the effect of actions encoded in the matrix should
respect physical constraints: increasing capacity should
not increase queue lengths in the linear approximation.
These conditions can be encoded as sign and magnitude
constraints on the entries of the matrices. For example, one
may require that certain entries be nonpositive to ensure
that increased capacity reduces congestion metrics in the
state.

When actions are restricted to a discrete set of
scaling increments, the linear dynamics still provide insight
through the concept of local controllability [63]. A pool is
locally controllable in a given region of the state space
if small adjustments in capacity can move the state
in directions that reduce cost and violation penalties.
Under the linear model, this property can be analyzed by
examining the rank and structure of the matrix restricted
to the components of the state corresponding to queue
lengths and utilization. If the controllable subspace is
sufficiently rich, reinforcement learning agents can, in
principle, discover policies that steer the system toward
regions of the state space with lower cost [64].

Finally, the interaction between swarm coordination and
the linear provisioning model can be expressed in terms of
aggregate variables. For instance, let the swarm state at

each agent estimate a linear functional of the local state,
such as a weighted sum of utilization and queue lengths.
The consensus update then approximates a distributed
averaging of this linear functional across the graph. Under
suitable conditions on the weights, the swarm variables
converge to a value proportional to the average congestion
across the platform or across a region of the cluster [65].
This global congestion estimate influences local actions
and effectively implements a linear feedback term that
couples the dynamics of different pools, mitigating the risk
of localized overreaction and oscillation.

Experimental Evaluation

The behavior of the swarm-coordinated multi-agent rein-
forcement learning framework is evaluated in a simulated
enterprise analytics platform that captures key structural
features of real deployments. The simulation environment
models a cluster with multiple resource pools, each com-
prising a fixed number of physical nodes and hosting several
analytic services [66]. Workloads consist of multiple traffic
classes with distinct latency requirements and resource pro-
files. Arrival processes combine periodic patterns to cap-
ture diurnal effects and superimposed bursts representing
business events and batch pipeline triggers. Service times
depend on resource allocations, with diminishing returns
as capacity approaches saturation.

The linear state evolution model is calibrated using
queueing-theoretic approximations derived from the simu-
lated service configurations [67]. For each pool, the simu-
lation tracks queue lengths, utilization levels, and response
time proxies as a function of the allocated capacity and
arrival rates. Linearization is performed around operating
points corresponding to moderate utilization, and the re-
sulting matrices are used to define the dynamics for the
reinforcement learning agents. To account for nonlinear
effects at high utilization, disturbances are injected that
capture the discrepancy between the linear approximation
and the actual simulated behavior [68]. This creates a
scenario in which the learning agents must compensate for
model mismatch while exploiting the structural information
encoded in the linear model.

Agents are positioned at the level of resource pools.
Each agent observes local metrics including smoothed
CPU and memory utilization, queue length indicators for
each traffic class served in its pool, and the difference
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between observed latencies and their targets. In addition,
each agent maintains a swarm state that is updated via
consensus with neighbors according to the communication
graph [69]. The underlying graph is chosen to reflect
physical proximity and shared bottlenecks, with agents
connected when their pools share underlying network links
or storage systems. The step size and weights in the
consensus update are tuned to achieve stable convergence
while remaining responsive to changes in congestion.

The agents use linear action-value functions and softmax
policies as described in the previous sections [70]. Features
include normalized utilization, queue ratios, deviation of
latency proxies from targets, deviations of allocations from
the baseline determined by the relaxed linear program,
and swarm variables. The action space for each agent
consists of discrete scaling steps for CPU and memory
allocation: increasing or decreasing capacity by fixed
increments within the feasible set. The reward signal
is constructed as the negative of the local stage cost,
combining resource usage and penalties for violating
service level constraints. Discounted and average-cost
formulations are both considered, with discount factors
close to one to emphasize long-run behavior [71].

To assess the impact of swarm coordination, several
configurations are compared. A first configuration uses
independent reinforcement learning agents without swarm
variables or communication. Each agent bases its policy
solely on local observations [72]. A second configuration
activates swarm coordination by including swarm variables
in the feature set and enabling consensus updates along
the communication graph. A third configuration employs a
centralized reinforcement learning controller that observes
aggregate state and selects joint actions, subject to the
same action space as the decentralized agents. This central
controller is trained using a similar actor-critic scheme but
operates in a higher-dimensional state-action space.

The experimental scenarios cover a range of workload
patterns and platform configurations [73]. In one set of
experiments, the cluster experiences slow diurnal variations
with moderate bursts, and service level constraints are
relatively loose. In this regime, all control strategies are
expected to maintain acceptable performance, but resource
utilization levels differ. In another set of experiments,
abrupt spikes are introduced in specific traffic classes in
certain pools, while others remain lightly loaded [74].
This setting tests how effectively the different controllers
can redirect capacity toward hot spots without violating
constraints in other parts of the cluster. A final set
of experiments introduces correlated bursts across many
pools, creating global stress on the platform and forcing
trade-offs between classes.

Metrics examined include average and tail latency
proxies per traffic class, the fraction of time that service
level constraints are violated, total resource consumption
over time, and measures of policy stability such as
the frequency and amplitude of capacity adjustments.
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In addition, the convergence behavior of the learning
algorithms is monitored through the evolution of value
function parameters, policy entropy, and swarm variables
[75]. The interplay between swarm coordination and
learning is observed by tracking how quickly local policies
adapt to changes in global congestion patterns and how
often oscillatory behaviors arise.

Across the scenarios examined, swarm-coordinated
multi-agent reinforcement learning exhibits a consistent
pattern. Compared to independent agents, the swarm-
coordinated agents tend to produce more synchronized
yet smooth capacity adjustments across neighboring pools
[76]. When a burst occurs in one pool, the correspond-
ing agent increases its swarm state, which then propagates
through the communication graph. Neighboring agents in-
terpret this increase as evidence of elevated congestion in
the region and are more conservative in scaling down their
own capacity, even if their local metrics do not yet exceed
thresholds. This behavior reduces the risk that capacity is
prematurely reclaimed from lightly loaded pools that are
about to experience spillover traffic.

Relative to the centralized controller, the swarm-
coordinated agents show similar adherence to service
level constraints but differ in how they realize capacity
adjustments [77]. The centralized controller can, in
principle, compute joint actions that optimize global
criteria, but it operates in a larger state-action space and
thus requires more samples and computation per update.
In the experiments, centralized learning converges more
slowly and can become sensitive to model mismatch in
the linear approximation, particularly when nonlinearities
in utilization-latency relationships become pronounced.
The decentralized swarm-coordinated agents, by contrast,
leverage local structure and operate on lower-dimensional
observations, which improves sample efficiency while
relying on swarm variables to share essential congestion
information [78].

The evaluation also highlights the influence of the
communication graph topology on performance. For
highly connected graphs, swarm variables converge quickly
across the entire cluster, causing agents to respond in a
relatively uniform manner to global congestion. This can
be beneficial when workloads are strongly correlated across
pools, as it promotes coordinated reductions in capacity
during low-demand periods and coordinated preservation of
headroom during high demand. However, in scenarios with
localized hot spots, overly connected graphs can spread
congestion signals too widely, leading to conservative
behavior even in pools that remain lightly loaded [79].
Sparser graphs concentrate swarm coordination within
regions of the platform, enabling more differentiated
responses at the cost of slower propagation of congestion
signals.

Sensitivity analysis with respect to consensus step size
and swarm feature scaling indicates that there is a range of
parameters for which swarm coordination stabilizes learning
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and improves resource utilization without introducing
oscillations. If consensus updates are too aggressive or
swarm variables are weighted too heavily in the feature
vectors, the agents may overreact to transient fluctuations
in swarm states, amplifying noise and creating correlated
oscillations in capacity allocations [80]. When consensus
updates are too weak, swarm variables change slowly
and provide limited benefit over purely local observations.
Intermediate settings achieve a balance, allowing swarm
signals to influence action selection while preserving the
role of local metrics.

Conclusion

This paper has examined dynamic resource provisioning
in enterprise analytics platforms through a combined per-
spective of multi-agent reinforcement learning, swarm co-
ordination, and linear resource modeling. The platform is
represented as a set of interacting resource pools, each con-
trolled by an agent that observes local metrics, exchanges
swarm variables with neighbors, and selects scaling actions
within a constrained action set [81]. A linear approximation
of the state dynamics and performance metrics provides
structure for value function approximation and steady-state
optimization, while swarm coordination offers a decentral-
ized way to propagate congestion information across the
cluster.

The formulation of the problem as a Markov game
with linear dynamics and piecewise linear cost enables
the use of linear function approximation for action-
value functions and actor-critic policy updates. The
inclusion of swarm variables in the feature representations
couples agents through a consensus mechanism on a
communication graph, influencing learning and action
selection without requiring centralized control [82]. The
relaxed linear program describing steady-state allocations
informs baseline resource distributions and suggests feature
constructions based on approximate shadow prices, which
guide agents toward policies that align with the underlying
optimization problem.

Experimental evaluation in a simulated analytics plat-
form indicates that swarm-coordinated multi-agent rein-
forcement learning can achieve resource utilization and ser-
vice level adherence that are competitive with a centralized
reinforcement learning controller, while maintaining a de-
centralized architecture. Compared to independent learn-
ing agents, the swarm-coordinated agents exhibit more sta-
ble policies and reduced oscillations in capacity allocations,
particularly under bursty and correlated workloads. The
communication graph topology and swarm update param-
eters play a significant role in shaping this behavior, creat-
ing trade-offs between responsiveness to global congestion
and sensitivity to local conditions [83].

Several limitations of the present study suggest direc-
tions for further work. The linear approximation of re-
source and performance dynamics simplifies the underly-
ing queueing behavior and may lose accuracy in regimes
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with high utilization or complex workloads. Extending the
framework to incorporate richer models, possibly through
piecewise linear or nonlinear function approximations, could
improve fidelity while preserving analytical tractability [84].
The current formulation also assumes fixed communication
graphs and static swarm update rules; adapting these struc-
tures over time based on observed workload correlations
and performance outcomes may yield additional gains. Fi-
nally, exploring integration with existing orchestration sys-
tems and validating the framework on production traces
would provide further insight into its practical behavior
and robustness. the combination of multi-agent reinforce-
ment learning with swarm coordination and linear resource
modeling provides a structured approach to dynamic pro-
visioning in enterprise analytics platforms. It leverages lo-
cal decision making, lightweight communication, and linear
analytical tools to balance resource efficiency and service
level compliance under stochastic and time-varying work-
loads, offering a basis for further theoretical and empirical
investigation [85].
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