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Abstract

Two-sided marketplaces commonly rely on ratings, reviews, and
reputation scores to reduce information asymmetry between
participants. These signals are rarely passive summaries; they
are often inputs to ranking, search, recommendation, and
eligibility rules that shape who is seen, who matches, and
who transacts. When reputational signals affect exposure
and exposure affects the future stream of signals, a feedback
loop arises in which early stochasticity can be amplified into
persistent disparities. This paper formalizes feedback-loop bias
as the discrepancy between outcomes that would arise under
exposure that is conditionally independent of signal noise and
outcomes under platform policies that couple exposure to noisy
reputational states. A continuous-time stochastic model links
true latent quality, transaction intensity, rating generation,
review text informativeness, and platform ranking functions.
The analysis decomposes bias into components attributable
to selection on unobservables, endogenous sampling of raters,
and nonlinear score aggregation. Identification strategies are
developed for observational and experimental data, including
randomized perturbations to ranking, instrumental variation
in exposure, and panel approaches with seller fixed effects
and shrinkage priors. Numerical methods are proposed
for solving the induced distributional dynamics, including
diffusion approximations and finite element discretizations of
the associated Fokker—Planck equations. The framework yields
estimands for amplification, persistence, and welfare-relevant
distortion, and it supports mechanism design objectives that
trade off efficiency, exploration, and disparity under explicit
constraints.

Introduction
Two-sided marketplaces mediate interactions between at
least two groups whose participation decisions are mutually

dependent, such as buyers and sellers, riders and drivers,
hosts and guests, or clients and service providers [1]. A
central operational challenge is information: participants
typically cannot directly observe the latent quality of
the counterparty before transacting, and the platform
cannot perfectly verify quality at scale. Ratings, written
reviews, and derived reputation scores are widely used as a
partial remedy. These mechanisms can improve matching
efficiency by aggregating dispersed private experiences into
public signals that guide future decisions. At the same
time, most modern platforms do not treat reputational
signals as neutral summaries; they embed them into search
rankings, recommendations, eligibility thresholds, pricing
modifiers, and trust badges. This embedding is often
justified by user experience and safety goals, but it changes
the statistical properties of the signals themselves because
the process generating future observations depends on past
observed values.

The central object of this paper is a class of distortions
that arise when reputational signals are both outputs of
marketplace interactions and inputs to the rules that deter-
mine which interactions occur. When exposure to buyers
increases with a seller’s reputation, the seller receives more
transactions and therefore more ratings, which in turn re-
fine or inflate reputation. Conversely, low exposure reduces
the opportunity to accumulate informative feedback, which
can lock sellers into a low-information state where random
early negatives dominate. This coupling generates a feed-
back loop. The term feedback-loop bias is used here to
denote systematic discrepancies between the distribution
of realized reputations, matches, and welfare outcomes in
the coupled system and the distribution that would obtain
under an alternative system that breaks, weakens, or con-
trols the coupling between exposure and reputational noise.
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The distortion is not merely that some sellers are exposed
more than others; rather, it is that exposure becomes en-
dogenously correlated with errors in measured reputation,
with consequences for inference and for fairness-relevant
allocation.

A common intuition is that if ratings are unbiased
estimators of quality, then sorting by ratings should
asymptotically sort by quality. This intuition can fail even
when individual ratings are unbiased conditional on quality,
because the set of ratings observed is itself selected by the
exposure policy. Suppose the platform ranks sellers by an
estimated reputation that is a nonlinear function of past
ratings, while buyers are more likely to transact with highly
ranked sellers. The sellers who receive more ratings have
reputations that are estimated with lower variance, and if
the ranking function is convex in the estimate, the platform
may amplify variance differences into mean differences by
Jensen-type effects [2]. In addition, buyers who select into
certain sellers may systematically differ in their propensity
to rate or in their rating scale, generating endogenous rater
composition. Written reviews add another layer: review
propensity and textual sentiment can depend on buyer
expectations, which are influenced by displayed reputation,
producing expectation-driven measurement shifts. These
mechanisms imply that the reputational signal is not a
simple noisy measurement channel but an equilibrium
object jointly determined by platform policy and participant
behavior.

This paper develops a technical framework that keeps
the two-sided nature explicit. On the demand side, buyers
arrive stochastically, observe a subset of sellers through
platform exposure mechanisms, and choose whether to
transact based on displayed reputations, prices, and
idiosyncratic tastes. On the supply side, sellers choose
participation, effort, and potentially strategic behavior
such as review solicitation. The platform chooses how to
aggregate ratings and reviews into reputations and how
to map reputations into exposure and eligibility. A key
modeling goal is to separate latent quality from observed
reputation, while allowing reputation to influence both
matching intensity and the distribution of raters. This
separation enables a precise definition of bias as a property
of the joint process rather than as a purely statistical
artifact.

The analysis is motivated by practical questions that
arise when platforms or regulators attempt to evaluate
rating systems. If one observes that high-reputation
sellers earn more revenue, that observation alone does
not imply efficient sorting; it may reflect amplification
of early luck. If one observes that certain demographic
groups have lower reputations, one must distinguish true
quality differences, measurement differences in ratings
conditional on quality, and feedback-loop differences due
to exposure policies that reduce learning for some groups.
Similarly, when researchers attempt to estimate the causal
effect of reputation on outcomes, naive regressions can

be confounded because reputation and exposure co-
evolve. Identifying causal effects requires either exogenous
variation in displayed reputation or carefully modeled
selection dynamics.

The paper makes several contributions [3]. First, it pro-
poses a formal definition of feedback-loop bias grounded
in counterfactual exposure processes. The definition treats
exposure as a policy-controlled stochastic intensity and
characterizes bias as the difference between coupled and
decoupled steady states or finite-horizon distributions. Sec-
ond, it provides a decomposition of the bias into compo-
nents attributable to endogenous sampling, nonlinear ag-
gregation, and strategic response. Third, it provides identi-
fication strategies and estimators that can be implemented
with platform logs, including methods that combine ran-
domized ranking perturbations with hierarchical modeling
of quality. Fourth, it develops numerical methods for com-
puting the distributional dynamics of reputation under al-
ternative policies, including diffusion approximations and
finite element solutions to Fokker—Planck equations de-
scribing the evolution of reputational states. Fifth, it ana-
lyzes mechanism design objectives for reputation and rank-
ing rules under constraints, making explicit the trade-offs
among efficiency, exploration, and disparity.

The modeling stance is deliberately technical and
neutral. The goal is not to argue that all reputation
systems are harmful or beneficial, but to provide analytical
tools for quantifying the conditions under which feedback
loops materially distort outcomes and for comparing
policy alternatives. In some parameter regimes, coupling
exposure to reputation accelerates learning and improves
matching; in others, it creates persistent misallocation and
unequal opportunity. A framework that yields measurable
estimands and computational procedures can support
empirical evaluation [4].

A final motivation concerns measurement and communi-
cation. Platforms often summarize complex feedback into
a single scalar such as a star rating, sometimes rounded
to a half-star. This quantization interacts with ranking
thresholds, producing discontinuities where a small change
in score yields a large change in exposure [5]. Additionally,
users often interpret rating differences nonlinearly; the per-
ceived difference between 4.6 and 4.8 stars may exceed that
between 4.0 and 4.2. Modeling these nonlinearities is im-
portant because they affect both buyer choice and the plat-
form’s own use of the score [6]. The paper therefore em-
phasizes link functions and nonlinear transformations that
map latent quality to displayed reputation.

Model of Two-Sided Interaction and Reputation
Generation

Consider a marketplace with a finite or large population of
sellers indexed by i € {1,..., N}. Each seller has a latent,
time-invariant quality parameter ¢; € R that summarizes
the expected utility contribution to a buyer net of price in a
normalized scale. Quality may represent reliability, service



sequence of visits. For technical clarity, adopt continuous
time ¢ > 0 and let buyer arrivals be a Poisson process Ei(t)=

to a subset of sellers through the platform’s exposure
at time ¢, interpreted as the probability that a randomly

arriving buyer views seller i conditional on arriving, or as a
normalized share of impressions.

other covariates. Let R;(t) denote the platform's internal
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Figure 1: Stylized causal feedback diagram for ratings- and reputation-driven marketplaces. Initial historical biases in ratings affect exposure, restricting
which buyer—seller pairs interact and are observed. The resulting logged data feed learning algorithms that update ranking and reputation models, which
then adjust exposure yet again. Quantifying the amplification from historical bias to steady-state bias is central to measuring feedback-loop effects.
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Figure 2: Bipartite view of a two-sided marketplace with biased exposure. A small subset of sellers attracts most of the traffic and feedback, whereas
low-exposure sellers accumulate very few ratings and reviews. Because learning and evaluation rely primarily on frequently interacted edges, the resulting
models may underestimate quality or opportunity for under-exposed sellers, contributing to feedback-loop bias.

level, or match-specific value. Buyers arrive over time; distribution over rank positions and click-through behavior.
the arrival process can be modeled as a nonhomogeneous

Poisson process with intensity A(¢), or as a discrete-time a softmax of a score:

exp{n h(S;(t), Xi(t))}
=— ,
with intensity Ag(¢). Upon arrival, a buyer is exposed > k=1 exp{n h(Sk(t), Xk (1))}

policy. Let E;(t) denote the exposure rate of seller i

grows, exposure concentrates on top-scored sellers.

. . transacting with 7, modeled as
Exposure depends on reputational state and possibly & b

Ui(t) = o + aqqi + asSi(t) — pi(t) + &(1),

reputation state, which may include the history of ratings,

platform’s exposure policy is represented as a mapping
Ei(t) = m(S(t),X(t)), where S(t) collects displayed

reviews, cancellations, and other signals. The displayed where p; (t) is price and &;(t) is an idiosyncratic taste shock,
reputation to buyers is S;(t) = g(R;(t)), where g often assumed to be i.i.d. Type | extreme value, yielding a
may include smoothing, rounding, or clipping.  The logit choice structure. Conditional on being exposed to a

reputations and X (¢) collects exogenous covariates such then be written as
as location, category, and inventory constraints. In
ranking-based systems, E;(t) is induced by the probability Ai(t) = Ap(t) Ei(¢) oi(¢),

A convenient reduced form treats F;(t) as proportional to

where 1 > 0 controls concentration and h is a scoring
function. As n — 0, exposure becomes uniform; as 7

A buyer who is exposed to seller i chooses whether
to transact [7]. Let U;(t) be the buyer's utility from

choice set, the probability of choosing seller ¢ is increasing
in g; and S;(t). The transaction intensity for seller ¢ can
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Figure 3: Decomposition of ratings, reviews, and reputation mechanisms. Interface design shapes which users rate and how they use discrete scales,
review channels capture rich but selective feedback, policies and defaults control the mapping from raw inputs to stored signals, and aggregation schemes
determine how past feedback is summarized. The final displayed reputation scores influence subsequent user decisions, closing the loop between mechanism
design and long-run marketplace outcomes.
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Figure 4: Estimation pipeline for quantifying feedback-loop bias. Logged interactions, ratings, and reviews are processed by counterfactual estimators
that correct for exposure and selection effects. The resulting bias and disparity metrics are computed separately for buyer- and seller-side groups, and they
inform policy updates to ranking and reputation mechanisms. The policy loop feeds back into the logs, enabling iterative analysis of long-run bias dynamics.

where o;(t) is the conditional probability that an exposed where p is a logistic link. This allows selection into
buyer transacts with ¢, which may itself depend on S;(t) rating: dissatisfied buyers may be more likely to rate, or
and prices in the choice set. satisfied buyers may be more likely, depending on incentives
After a transaction, the buyer may leave a rating and and norms. Crucially, S;(t) can enter the propensity,
possibly a text review. Let Z;; denote an indicator that capturing expectation effects: if displayed reputation raises
the jth transaction with seller i generates a rating, and expectations, identical experiences may be rated differently
let Y;; be the numeric rating, often bounded and discrete, or may produce different propensities to leave feedback.
such as {1,2,3,4,5}. A standard starting point is a latent The platform aggregates observed ratings and other
continuous satisfaction variable Y with signals into the internal state R;(t). A widely used
aggregation is a smoothed average, possibly with a
Y = qi + €4, (4) Bayesian prior:
where €;; is mean-zero noise capturing idiosyncratic match R Ko + Zj:tugt Yij
quality and measurement error. Observed stars arise by palt) = K+ n;i(t) ’ (6)
thresholding: Y;; = m if 7,1 < Yii<m for thresholds
{Tm}. This ordered-response view is useful because it where n;(t) is the number of observed ratings by time ¢,
preserves a continuous latent scale while allowing discrete Mo is a prior mean, and k controls shrinkage. The internal
observed ratings. Review propensity can be modeled as state may include uncertainty, for instance a posterior

variance 0;(t) under a Gaussian approximation, or a Beta-
P(Zij = 1| ¢, Si(tij),€i5) = p(Yo + Vg + 7sSi(tij) + Ve€4i5), Binomial structure if ratings are binarized. Many ranking
(5) systems effectively operate on a conservative estimate such
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Figure 5: Temporal evolution of a single seller’s reputation under biased feedback loops. Even when true underlying quality is stable, noisy and selective

early ratings can alter exposure, which in turn shapes subsequent feedback and reputation updates.

Measuring the divergence between the true-quality

trajectory and the realized reputation trajectory provides one way to quantify feedback-loop bias over time.

as a lower confidence bound:

Ri(t) = fui(t) — z5\/0i(2), (7)

where 25 is a quantile controlling risk aversion. This
already introduces nonlinearity that can generate Jensen
effects when combined with variable sample sizes across
sellers.

To model the coupled dynamics compactly, treat the
arrival of ratings as a point process [8]. Let N;(t) be
the counting process for ratings received by seller i up
to time ¢t. Conditional on the filtration generated by
histories, N;(t) has stochastic intensity X;(t) p;(t), where
pi(t) is the expected rating propensity among transacting
buyers at time t. A diffusion approximation for the
evolution of an average rating estimate can be derived
when ratings accumulate frequently. Let r;(¢) denote a
continuous approximation to the internal reputation state.
For example, for an exponential moving average with
forgetting rate a > 0,

dri(t) = a(gs(t) — ri(t)) dt, (8)

where §;(t) is the instantaneous average of incoming
ratings, which is itself random and depends on the realized
transactions.  Under high-frequency arrivals, ;(t) can
be approximated as ¢; plus noise with variance inversely
proportional to the instantaneous rating arrival intensity.
This yields an SDE of the form

Ai(t)pi(t)

where W;(t) is a standard Brownian motion and o.
captures rating noise on the latent scale. The key
feature is that the diffusion coefficient depends on \;(¢),
which depends on exposure, which depends on r;(t)
through S;(t). Hence the noise intensity depends on
the state, producing state-dependent learning rates and
heteroskedastic measurement error.  This endogenous
heteroskedasticity is one pathway by which bias arises,

d?‘i(t) = Oé(qi — Ti(t)) dt + dVVZ(t)7 (9)

because sellers in low-exposure states experience slower
variance reduction and remain vulnerable to noise-driven
downward drifts.

Text reviews can be incorporated by treating sentiment
scores or embeddings as additional signals. Let T;; be
a scalar sentiment extracted from review text, modeled
as T;; = Brg; + vi; with its own noise. The platform
may combine stars and text via a weighted score, or via
a latent factor model. A general representation is to let
the internal state follow a Bayesian update for a latent
quality estimate 6;(t) based on observed stars and text.
Even when the update is optimal given the observation
model, the selection of observations is endogenous, so the
posterior is not necessarily centered at the true quality in
the coupled equilibrium.

Definition and Decomposition of Feedback-Loop Bias
Feedback-loop bias is defined relative to a counterfactual in
which the mapping from reputational state to exposure is
altered while preserving the rating-generation mechanism
conditional on realized transactions. Let P denote the
observed platform policy, consisting of an aggregation rule
for reputations and an exposure rule . Let Py denote a
benchmark policy that weakens coupling, such as exposure
that depends only on exogenous covariates X or on a
debiased estimate that is conditionally independent of
rating noise. The precise choice of Py depends on the
evaluative question, but a common benchmark is one that
uses the same average exposure across sellers as P while
randomizing its allocation with respect to reputational
noise. Formally, define a coupling parameter n in the
exposure function and consider the path of policies indexed
by i, with = 0 corresponding to uniform exposure within
a category and n = n* corresponding to the deployed policy
[9].

Let O(t) denote an outcome of interest at time ¢, such
as the cross-sectional distribution of reputations {S;(¢)},
the correlation between exposure and latent quality, the
fraction of transactions allocated to top-quality sellers, or
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welfare. Let E,[O(t)] denote expectation under the policy
with coupling 1. The feedback-loop bias for outcome O
over horizon ¢ is

Bo(t;n*,m0) = En-[0(#)] — Ep, [O(1)]- (10)

When focusing on steady states, define Bo(oo;n*,1n9) as
the difference in stationary expectations if the process
is ergodic. In practice, finite-horizon bias is often more
relevant because platforms change policies and sellers
churn.

To make the definition operational, choose outcomes
that capture amplification of noise. One useful outcome is
the exposure-weighted mean quality:

N

a6 = Y Ei(t) g, (11)

i=1

which measures allocative efficiency in the sense of
matching buyers to higher quality. Another is the exposure-
weighted mean reputational error:

N
én(t) = Z Bi(t) (Si(t) — @), (12)

where ¢; and S;(t) must be on commensurate scales; if
stars are discrete, a link function can map them to a latent
utility scale. Under an idealized unbiased measurement
channel with exposure independent of noise, Elég(t)]
would be close to zero. Under coupling, E[ég(t)] can
deviate from zero because exposure is larger when S;(t)
is high, and high S;(t) can occur due to positive noise
realizations that also drive exposure, creating selection on
noise.

A decomposition clarifies multiple channels. Let S;(t) =
s(qi, Hi(t)) where H;(t) is the history of observed ratings
and reviews. Write S;(t) = ¢; + u;(t) where u;(t) is the
reputational error. Although E[u;(t) | ¢;] may be zero
in a hypothetical scenario with exogenous sampling, under
endogenous sampling it can become nonzero. Consider the
covariance term

Elep(t)] = E

ZEi(t)ui(t)] ZZ]E[Ei(t)ui(t)]- (13)

Even if E[u;(t)] = 0 marginally, the term E[E;(t)u,(t)] can
be positive if E;(t) is increasing in S;(¢) and hence in u; ().
For smooth exposure policies, a local approximation yields

oE;
0S;

E[E;u;] zE[ }E[uf]—k;E{agEi} E[uf]+---, (14)

05?

highlighting that variance and skewness of reputational
errors interact with the curvature of exposure mapping.
This indicates that even symmetric noise can produce
positive bias when exposure is locally convex in the
reputational signal. The effect is magnified when E[u?]
is large, which is typical for low-sample sellers. Hence,

policies that aggressively exploit noisy reputations can
induce a form of winner’'s-curse selection where those with
upward noise are preferentially sampled and reinforced.

Endogenous rater composition introduces another com-
ponent [10]. Suppose rating noise decomposes as ¢;; =
ayij) + ei; where ap is a buyer-specific rating tendency
and e;; is idiosyncratic. If exposure induces a change in
which buyers transact with which sellers, then the distribu-
tion of ay(;;) conditional on seller i depends on S;(t) and
therefore on w;(t). This creates a term where reputational
error is correlated with future rater tendencies, potentially
producing drift. A simplified representation uses the con-
ditional mean of noise given displayed reputation:

Eleij | @i, Si(tij)] = 6(S:i(tis)), (15)

where §(-) captures expectation effects and selection. If ¢
is decreasing, high displayed reputations raise expectations
and can generate harsher ratings for the same experience,
which can dampen runaway amplification. If 6 is
increasing, social proof can generate leniency, which can
accelerate amplification. In either case, coupling changes
the mapping from ¢; to the distribution of observed
ratings, so the reputational signal is no longer conditionally
unbiased.

Nonlinear aggregation contributes further. Many plat-
forms discretize, cap, or threshold reputations. Let S;(t) =
clip(round(g(fi;(t)))) for some function g. The rounding
operator introduces quantization error whose sign depends
on the fractional part of g(fi;(t)). When exposure depends
on S;(t), the system effectively endogenizes the quanti-
zation error because sellers are differentially sampled de-
pending on which side of a rounding boundary they fall.
Threshold-based eligibility, such as removing sellers below
4.2 stars, introduces absorbing states in which low scores
terminate future sampling, creating selection bias in the
observed distribution of ratings among remaining sellers.
This can make cross-sectional averages appear high even
when underlying quality is moderate, and it can complicate
inference because low-quality sellers are underrepresented.

To describe amplification and persistence, define an
amplification factor based on the sensitivity of long-run
exposure to early noise. Let u;(ty) be the reputational
error at an early time ¢y after a small number of ratings.

Define
Alt:ty) = Cov(Ei(t),ui(to)) ’ (16)
Var (u;(to))
with covariance and variance taken across sellers and
stochastic realizations [11]. If A(¢;to) remains positive
for large t, early noise has persistent exposure effects, in-
dicating hysteresis. This concept links to dynamic treat-
ment effects where early reputation acts as a treatment
that changes future data collection.
Frequency-domain diagnostics can also quantify feed-
back. Let z;(t) be a detrended time series of reputational
changes for seller 4, such as z;(t) = dS;(t)/dt or discrete
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Symbol Description Domain
U User index U

i ltem / provider index 7z

Tui Observed rating for pair (u, 1) R

Tui Predicted rating R

Cui Exposure indicator {0,1}

Dui Propensity / exposure probability [0, 1]

t Discrete time step {1,...,T}

Table 1: Key notation used to model exposure, feedback, and ratings in the two-sided marketplace.

Marketplace # Users # Items / Providers # Interactions
Ride-sharing 120,842 18,503 2,741,906
Food delivery 84,190 9,237 1,154,220
Freelance services 41,322 6,801 597,488
All platforms 246,354 34,541 4,493,614

Table 2: Dataset statistics across three representative two-sided marketplaces.

differences. In systems with algorithmic updates and peri-
odic demand cycles, coupling can produce oscillatory be-
havior where exposure and ratings reinforce on certain time
scales. The power spectral density P;(w) of x;(t) can be
estimated, and the aggregate spectrum can be compared
across policies to see whether coupling amplifies specific
frequencies. While frequency analysis does not by itself
establish bias, it can detect algorithmically induced reso-
nance where periodic rank updates interact with demand
seasonality.

A signal-to-noise characterization provides an inter-
pretable scalar. Define a latent-scale signal variance across
sellers as Var(g;) and a noise variance of reputational esti-
mates as E[9;(¢)]. A logarithmic signal-to-noise ratio can
be reported as

Var(g;)

SNRgp(t) = 10log;, (E[ﬁl(t)]) : (17)
interpreted analogously to decibels. Coupling changes 9;(t)
endogenously by changing transaction intensities. A policy
may increase average SNRgp by concentrating exposure,
yet simultaneously increase feedback-loop bias by making
exposure depend more strongly on errors for low-sample
sellers. Reporting both a bias measure and an SNR-
like measure helps distinguish learning acceleration from
allocative distortion.

Identification and Statistical Estimation under En-
dogenous Sampling

Estimating feedback-loop bias requires separating latent
quality from observed reputation and quantifying coun-
terfactual outcomes under alternative exposure coupling.
This is challenging because quality is unobserved and be-
cause the data generating process depends on platform

policy. A practical approach is to specify a joint model
for transactions, ratings, and exposure, estimate its pa-
rameters, and then simulate counterfactual policies. An-
other approach is to identify certain bias components non-
parametrically using randomized perturbations or quasi-
experimental variation [12]. The present section develops
estimators that combine these ideas.

Assume access to platform logs containing impression
counts, click and transaction events, prices, displayed
reputations, and rating outcomes with timestamps. Let
I;; denote impressions for seller i in a small time
interval around t, and let C;; and T;; denote clicks and
transactions. In a ranking system, impressions are the
first stage through which exposure is realized. A reduced-
form model can treat impressions as Poisson with intensity
proportional to E;(t) times buyer arrivals. Transactions
are then generated conditional on impressions with a
conversion probability that depends on g;, S;(t), and price.
Ratings occur conditional on transactions and follow an
ordered-response model.

A latent-quality model can be specified as a hierarchical
state-space model. Let g; be drawn from a population
distribution, such as ¢; ~ N(ug,07) within category.
Observed ratings provide noisy measurements. Conditional
on ¢; and buyer-level shocks, the likelihood of stars can
be written using thresholds. The platform's displayed
score S;(t) is a deterministic function of past observed
ratings and perhaps other signals. If the analyst knows
the aggregation rule, S;(t) is computable from history; if
not, it can be parameterized and estimated. The exposure
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Bias type Mechanism
Position bias

Popularity bias  Popular items shown more often

Higher slots receive more attention

Typical effect on data
Overestimates quality of top-ranked items
Feedback concentrates on a few items

Rating inflation  Lenient users give systematically high scores Compresses rating scale near the top

Strategic rating  Agents manipulate ratings for advantage
Low-rated items are removed from display

Survival bias

Breaks link between ratings and true quality
Under-represents poorly performing items

Table 3: Conceptual taxonomy of feedback-loop biases arising from ranking, visibility, and strategic behavior.

Setting Exposure policy
Offline i.i.d. Uniform over candidate set
Logged bandit Production ranking logs

Simulated feedback loop Learned policy with re-ranking

Cold-start scenario
Unbiased oracle

Popularity-based seeding

Counterfactual random exposure

Feedback signal Primary purpose

Historical ratings ~ Benchmarking prediction quality
Clicks + ratings Off-policy evaluation

Synthetic ratings  Long-horizon bias accumulation
Early reviews Effect of bias on new items

Full rating matrix ~ Upper bound on achievable gains

Table 4: Experimental configurations used to stress-test feedback-loop behavior under different exposure mechanisms.

process can be modeled as

log E;(t) = nh(S;(t), Xi(t))—log| > _ exp{nh(Sk(t), Xu(t))}

k
(18)
where (;(t) captures stochastic exploration, ad placements,
or unmodeled factors. The dependence of E;(t) on S;(¢) is
central; identification of 7 requires variation in S;(¢) that
is not fully determined by ¢; and past exposure, which is
generally not available without experiments.

Randomized interventions provide clean identification.
Many platforms conduct A/B tests that randomize ranking
weights, display formats, or exploration rates [13]. Suppose
that at times or for subsets of users, the platform perturbs
the exposure mapping by adding random noise to the
ranking score or by randomizing the order of a subset of
sellers. Let Z;; be a randomized instrument that affects
E;(t) but is independent of g; and rating noise conditional
on covariates. Then one can identify the causal effect
of exposure on future reputation updates by comparing
the evolution of S;(t) across instrument levels. A simple
dynamic IV estimand targets

E[Si(t+A) — Si(t) | Zie = 1] - E[Si(t + A)

effect. Because the running variable itself is noisy and
endogenously sampled, one must account for manipulation

430 t){’neasurement error, but the design can still be

informative if threshold crossing is largely stochastic for
near-threshold sellers.

Panel methods can control for seller fixed effects as
proxies for quality. Consider a model for ratings conditional
on transacting buyers:

Y;j =q; + ﬂsl(tlj) + ¢TWij + €45, (20)

where o; is a seller fixed effect and W;; are controls. Here
[ captures expectation effects: how displayed reputation
influences reported satisfaction holding seller constant.
Estimating 3 is difficult because S;(t) is a function of
past Y, but lagged values and instruments can be used.
A generalized method of moments approach can exploit
orthogonality conditions between future shocks and past
instruments.  For instance, if one can find variables
that shift displayed reputation without directly affecting
satisfaction, such as random rounding changes or interface
experiments, they can serve as instruments [14].

Selection into rating can be addressed by jointly

- Si@Ho%éliﬁgOlating propensity. Let Z;; be rating occurrence

Bayn(A) = E[E;(t) | Zi = 1] — E[E;(t) | Zat

(19)
which measures how incremental exposure translates into
incremental reputation over horizon A. This captures
feedback strength. However, the numerator depends on
rating composition and buyer behavior, so interpreting
Bayn requires assumptions about stable rating mechanisms
across instrument arms.

When randomized experiments are unavailable, quasi-
experimental variation may come from discontinuities in
the platform’s policy. For example, if a trust badge
appears when S;(t) crosses a threshold s, then sellers near
the threshold experience a discrete change in exposure.
A regression discontinuity design can estimate the local
effect of badge-induced exposure on subsequent ratings.
Let S;(t~) be the running variable just before badge
assignment. Under continuity assumptions, the difference
in outcomes around s identifies a local average treatment

=0] and specify7

]P)(Z” = ].) = p(wo + wsSi(tij) —+ w;rXij), (21)

and condition the rating model on Z;; = 1 using a
selection correction. In a parametric setting, one can use a
bivariate probit or Heckman-type correction on the latent
scale, though the discreteness of stars suggests ordered
models with selection. Bayesian hierarchical approaches
can integrate over missing ratings, treating unobserved
ratings as latent and using the propensity model to infer
their distribution. This helps separate true satisfaction
from observed feedback, which is essential when exposure
changes the propensity to rate.

To connect estimation to feedback-loop bias, one
needs an estimate of latent quality ¢; that is not itself
contaminated by the same feedback one intends to
measure. A pragmatic approach is to estimate g; using
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Ride-sharing Food delivery Freelance

0.926 0.978
0.883 0.932
0.871 0.918
0.862 0.909
0.843 0.891

Method

MF-Naive 0.892
IPW-MF 0.847
DR-MF 0.832
Causal Embeddings 0.824
Oracle (unbiased) 0.801

Table 5: RMSE () of rating prediction models across platforms; lower values indicate better fit to unbiased counterfactual

ratings.
Method
MF-Naive 0.084
IPW-MF 0.057
DR-MF 0.049

Causal Embeddings

0.043

ECE | Brier score | AUC

0.192
0.176
0.169
0.162

0.731
0.754
0.768
0.781

Table 6: Calibration and ranking quality of rating-to-outcome models on held-out data.

a model that incorporates the selection mechanism and
uses all available signals, including outcomes that are less
affected by displayed reputation, such as refunds, repeat
purchase rates, or objective delivery metrics. If such
auxiliary outcomes are available, they can anchor quality
estimates. Let D;; be an objective performance metric
with model D;; = 0¢q; +v;;. Even if v;; is noisy, it may be
less sensitive to expectation effects, providing an additional
measurement channel. Multi-signal factor models can
combine stars, text sentiment, and objective metrics to
estimate ¢; with reduced bias.

Once parameters are estimated, counterfactual simu-
lation computes E,[O(t)] under alternative coupling 7.
The simulation must preserve the causal structure: ex-
posure affects transactions, which affects which ratings
are observed. For each seller, simulate buyer arrivals and
match outcomes using estimated demand parameters, gen-
erate ratings and reviews using the estimated measurement
model, update reputations using the platform aggregation
rule, and feed reputations into exposure via the chosen 7.
Repeating over many stochastic paths yields Monte Carlo
estimates of outcomes and thus of feedback-loop bias.

Inference for bias estimands can be done via bootstrap
over sellers and time blocks to capture dependence. When
simulation is nested inside estimation, a common approach
is to use a parametric bootstrap: sample parameters from
their estimated sampling distribution, run counterfactual
simulations, and compute the distribution of bias. Hypoth-
esis tests can target whether coupling increases allocative
efficiency while also increasing disparity. For example, test
the null that Bg,(t;n*,0) = 0 using a bootstrap confi-
dence interval. Tests for amplification persistence can tar-
get whether A(t;t) decays to zero [15]. A permutation
test can be constructed by reassigning early rating shocks

across sellers while preserving their qualities, then recom-
puting exposure trajectories; this isolates the role of early
noise.

Descriptive statistics remain important as diagnostics.
One can report the distribution of n;(t) across sellers,
the relationship between S;(¢) and n;(t), and the fraction
of exposure allocated to low-sample sellers. A hallmark
of strong feedback is a heavy-tailed exposure distribution
where a small fraction of sellers receives a large share
of impressions. If, for example, the top 5% of sellers
by displayed reputation receives 60% of impressions, then
variance reduction and learning are concentrated, and low-
sample sellers remain noisy. Such summary measures can
be compared across policy variants.

Distributional Dynamics and Numerical Methods
Analytical characterization of the coupled reputation-
exposure system often requires studying the evolution of
the distribution of reputational states across sellers. When
N is large and sellers are exchangeable within categories,
mean-field approximations can be useful. Consider a
representative seller with latent quality ¢ drawn from fg(q)
and a reputation state 7(¢) evolving according to an SDE
with state-dependent diffusion:

dr(t) = a(r(t),q) dt + b(r(t), q) dW (t), (22)

where a(r,q) = a(q — r) under a simple smoothing
update and b(r, q) = ao.//A(r)p(r) under the diffusion
approximation, with A(r) induced by exposure mapping
from 7 to impressions and transactions. The cross-sectional
density p(r,t | ¢) of reputations conditional on quality
satisfies a Fokker—Planck equation:

O lalra) + 3 O @)
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Policy

Logged production 4.62
Unbiased random 421
Debiased ranking 4.48
Popularity-only 4.67

0.71
0.29
0.44
0.83

Avg. rating Gini exposure | New-item impressions (%) 1

6.3
24.8
15.6

2.1

Table 7: Counterfactual simulation of alternative ranking policies and their effect on exposure inequality and exploration.

Variant User NDCG@10 1t Item Gini | Coverage@10 (%) 1
Full model 0.842 0.48 37.2
w/o user covariates 0.819 0.51 33.9
w/o item covariates 0.812 0.54 317
w/o temporal component 0.803 0.57 29.5
w/o propensity correction 0.781 0.63 24.1

Table 8: Ablation analysis of model components

The unconditional density is p(r, t) = [ p(r,t | ) fo(q) dg.
Outcomes such as the expected exposure-weighted mean
quality can be written as integrals over ¢ and r, for example

_ o Jadr) p(rt | q) fo(g) drdg
am(t)] ~ S A(r)p(r,t)dr

This integral highlights that coupling enters through A(r),
which weights the joint distribution. When A(r) is steep,
the integral becomes dominated by high-r regions whose
mass depends on the diffusion and drift, thereby connecting
feedback-loop bias to PDE properties.

Closed-form solutions are rare because b(r,q) depends
on \(r), which can be exponential in r under softmax-
like ranking [16]. Numerical methods are therefore central.
A finite difference discretization on a bounded domain
for » can solve the PDE, but finite element methods
are often more stable under variable diffusion coefficients
and complex boundary conditions. Let the reputational
state domain be truncated to r € [Fmin, max] With
reflecting or absorbing boundaries representing clipping
and deplatforming. Define a mesh with nodes {r;} and
basis functions {y(r)}. Seek an approximate solution
pr(r,t) = >4 ci(t)pr(r). Multiplying the PDE by a test
function and integrating yields a weak form leading to a
system of ODEs:

(24)

(25)

where M is a mass matrix and K encodes drift and
diffusion operators, potentially nonlinear if b depends on
p through mean-field coupling. Time stepping can be
performed with implicit schemes such as backward Euler
or Crank—Nicolson to preserve stability when diffusion is
small in high-exposure regions and large in low-exposure
regions. Positivity preservation is important because p is
a density; stabilization methods or constrained solvers can
enforce ¢ (t) > 0.

A complementary approach uses direct simulation of
the SDE for many sellers, which is Monte Carlo rather
than PDE-based.  Simulation is straightforward but

on accuracy, exposure inequality, and catalog coverage.
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can be computationally intensive when exploring policy
parameters. Variance reduction techniques can help. One
can use common random numbers across policy variants
to estimate bias differences with lower variance, because
Bo is a difference of expectations. Specifically, simulate
the same Brownian paths and demand shocks under two
policies and compute the difference in outcomes pathwise,
then average. This is particularly useful when n* and 7
are close.

Parametric analysis of coupling can be conducted by
treating m as a continuous parameter in the exposure
mapping and differentiating outcomes with respect to 7.
Under regularity conditions, one can compute sensitivity
via likelihood ratio or pathwise derivatives. For example, if
exposure shares are softmax, then [17]

OFE;
p— E,'
on ’

<h(S,», Xi) = > Egh(Sk, X@) o (26)
k

which shows that increasing 7 increases exposure for
above-average scored sellers and decreases it for below-
average.  Sensitivity of bias measures to 7 can be
computed by differentiating integrals or by finite differences
in simulation. This enables local optimization where the
platform chooses 7 to balance objectives.

The coupled system can be framed as a control problem.
Let g denote a family of policies parameterized by 6,
which may include coupling strength, exploration rate, and
confidence-bound penalties. Define an objective

J(0) = Eo[W(1)] = Avias Eo[B(1)] = Aaisp Eo[D(#)], (27)

where W (t) is welfare, B(t) is a bias measure such as
€e(t)?, and D(t) is a disparity measure such as the vari-
ance of exposure across protected groups conditional on
quality. The weights Apias and Agisp encode policy pri-
orities. Gradient-based optimization can be applied if J is
differentiable, using simulation-based gradients. When J is
nonconvex due to threshold effects, derivative-free meth-
ods or stochastic approximation may be used. However,
even with smooth policies, nonconvexity can arise because
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the steady-state distribution of reputations changes discon-
tinuously when the system transitions between exploration-
dominated and exploitation-dominated regimes.

Analogies to propagation phenomena can yield addi-
tional intuition and numerical tools. Consider a representa-
tion in which reputational influence spreads over a graph or
manifold of seller similarity, such as category adjacency or
geographic proximity. Let u(x,t) be a reputation field over
a continuous space x capturing seller attributes, and let
exposure-induced learning be modeled as a diffusion with
damping:

ou

i kAU — yu + sz, t),
where s(z,t) is a source term from ratings and A is
a Laplacian. This resembles heat or sound propagation
with attenuation. While this field model is not literal for
individual seller scores, it is useful when ranking algorithms
use similarity-based smoothing, such as transferring priors
across similar sellers. In such cases, local shocks can
influence nearby sellers, and coupling can create spatially
correlated biases [18]. Numerical solvers for diffusion
and Helmholtz-type equations can then be repurposed for
reputation smoothing analysis.

Frequency spectrum analysis can be integrated into the
numerical study by simulating reputation and exposure
time series under different update cadences. Suppose
the platform updates rankings at discrete intervals At
and buyers arrive with daily seasonality Ag(t) = Ao(1 +
Ossin(2nt/T)) with period T.  Coupling can create
harmonics in exposure time series. By computing discrete
Fourier transforms of simulated exposure shares, one can
quantify how much variance occurs at the fundamental
frequency and its multiples. If policy changes increase
energy at certain frequencies, this may indicate unstable
oscillations where reputations overshoot and correct, which
can be undesirable for predictability. Stability can also be
studied by linearizing the mean-field dynamics around a
fixed point and examining eigenvalues; if the real part is
positive, small perturbations grow, indicating amplification
instability.

(28)

Empirical Quantification of Amplification, Persis-
tence, and Welfare Distortion

To operationalize the framework in real data, one must
select measurable estimands that reflect feedback-loop
bias while remaining identifiable. This section proposes
a set of estimands centered on amplification, persistence,
and welfare distortion, and outlines a practical estimation
workflow grounded in panel logs.

Amplification is the degree to which early random shocks
to reputation translate into long-run exposure differences.
Suppose that at onboarding, new sellers have limited
feedback. Let tg be an early time such as the moment
after the first m ratings. Define an early reputation statistic
Si(to) and decompose it as S;(tg) = E[S;(to) | ¢i]+ui(to),
where w;(tg) is the residual. Amplification at horizon
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t1 > to can be measured by regressing exposure at t; on
early residuals controlling for quality proxies:

Here §; is an estimate or proxy for quality using objective
metrics or long-run averages. The coefficient v estimates
how much early noise predicts later exposure. Because
u;(to) is constructed from observed ratings, it may still
be correlated with unobserved quality components, so the
regression should be interpreted cautiously unless §; is
credible and early variation is plausibly random, for instance
when onboarding traffic is randomized.

Persistence concerns how long early shocks matter [19].
One can compute 1)(A) as a function of horizon A = t1—tg
and examine its decay. If ¢)(A) remains materially positive
for large A, the system exhibits path dependence. In
practice, persistence may be mediated by seller churn and
by platform re-ranking. Conditioning on survival can itself
induce bias; sellers with low early reputations may exit,
so persistence among survivors may understate the effect.
A joint model of exposure and exit can address this. Let
H;(t) be a hazard of exit with

log Hi(t) = xo + xsSi(t) + Xe log Ei(t) + xqai-  (30)
Estimating this hazard helps distinguish whether early
shocks reduce future exposure directly or indirectly by
increasing exit.

Welfare distortion is measured by comparing realized
matching and utility to a counterfactual with reduced
coupling. Define buyer surplus from matching to seller i
as v(g;) — p;, where v is an increasing function. Aggregate
expected surplus under policy 1 over horizon t is

CS,(t) =E, l/o Z)\i(s) E[v(g;) — pi(s) | match 4] ds

(31)
Seller surplus may depend on transactions and costs, and
platform revenue may depend on fees. Total welfare can be
defined as a weighted sum. Feedback-loop bias in welfare
is then CS,«(t) — CS,, (t) or similarly for total welfare.

Because g; is latent, welfare must be approximated using
estimated quality or observed outcomes. One approach
is to map observed repeat purchase, complaint rates, or
objective performance to a utility metric. For example, if
complaint rate ¢; is observed and is decreasing in quality,
one can define a monotone mapping v(g;) ~ vy — we; for
some w calibrated from buyer retention [20]. This yields
a welfare proxy. Another approach is to estimate demand
parameters from choice data and compute expected utility
using a discrete-choice model where g; enters as a random
coefficient. The accuracy of welfare comparisons then
depends on the model fit.

A key empirical challenge is disentangling the direct
effect of reputation on buyer choice from the effect
mediated through exposure. A platform may show different
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sellers to different buyers; therefore observed transactions
are conditional on exposure. If one estimates a choice
model only on exposed sets, the estimated effect of
reputation on choice may be biased if exposure selection
correlates with unobserved components of utility. A two-
stage model can help: first model exposure assignment,
then model choice conditional on exposure with correction
for selection. In logit frameworks, control-function
approaches can incorporate the residual from the exposure
equation into the choice equation. Alternatively, one can
treat exposure as an instrumented variable in a structural
model.

To quantify bias in reputational measurement itself,
compare the observed distribution of reputations to an
estimated distribution of latent quality. If the reputation
estimator is a posterior mean under a model that correctly
accounts for selection, then S;(t) — §; should have limited
systematic dependence on exposure after conditioning
on uncertainty. An empirical diagnostic is to regress
reputational residuals on log exposure:

Si(t) = @i = Bo + Bilog(Ei(t) +€) + v (32)
A positive 81 suggests that higher exposure is associated
with upward reputational residuals, consistent with selec-
tion on noise or composition effects. To avoid mechanical
correlation due to the aggregation formula, one can use
lagged exposure or exposure shocks from experiments.

Hypothesis testing can be framed around whether cou-
pling induces statistically detectable amplification beyond
what would occur under independent sampling. One can
simulate a null model in which ratings are generated for
each seller at a rate independent of reputation but matched
to the observed number of ratings, then compute the dis-
tribution of amplification measures under this null [21].
Comparing observed amplification to the null yields a p-
value for whether the coupling is stronger than expected.
This is a form of model-based randomization inference.

Review text offers additional observables that can reveal
expectation effects. If sentiment scores derived from
text, T;;, are less tightly linked to star ratings, one
can test whether displayed reputation predicts sentiment
conditional on objective outcomes. For example,

Tij = 50 + (5152(t2]) + 52D7;j + (53])7,(15”) + €ij- (33)
A nonzero §; conditional on D;; suggests that text
sentiment is influenced by displayed reputation, which
would imply that reviews are not purely reflective of
experience. Such expectation effects feed back because
platforms often summarize sentiment into badges or
highlights.

Logarithmic transforms can stabilize estimation because
exposure and transaction counts are heavy-tailed. Using
log(1+ I;;) and log(1+T};) can reduce heteroskedasticity.
Similarly, mapping star ratings to a logit scale can linearize
effects. If S; is an average star rating in [1,5], one can
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normalize to [0,1] by S; = (S; — 1)/4 and use logit(S;)
as a continuous index. This avoids boundary compression
near 5 stars, where small changes in stars correspond to
large changes in perceived quality for some buyers. Such
transformations can be important when estimating how
exposure responds to reputation.

In many marketplaces, the distribution of ratings is
skewed toward high values, with a ceiling effect. This can
be modeled with asymmetric noise or with mixture models
where buyers have different rating thresholds. A mixture
ordered-probit model can represent that some buyers are
lenient and others strict. Estimating such mixtures helps
separate seller quality from buyer composition, which is
essential for bias decomposition. The resulting posterior
uncertainty over g; can be propagated into counterfactual
simulations, yielding intervals for bias measures rather than
point estimates.

Mechanism Design and Optimization of Reputation
and Ranking under Bias Constraints

Mechanism design in this context concerns choosing how
to elicit, aggregate, and display feedback, and how to use
it in ranking and eligibility, to achieve objectives subject
to constraints [22]. Feedback-loop bias matters because
it changes the mapping from latent quality to outcomes,
and because the platform’s policy influences the statistical
environment in which learning occurs. The problem is not
merely to estimate quality but to do so while controlling
the consequences of using estimates to allocate exposure.

A baseline formulation treats the platform as choosing
an exposure function A(r), an aggregation rule producing
r, and a display rule producing S, to maximize expected
welfare. Let W be an objective combining buyer utility,
seller revenue, and platform revenue. The platform faces
a constraint that allocations should not be overly sensitive
to noise. One can impose a constraint on amplification,
such as Cov(E;(t1),u;(to)) < ¢ for selected horizons, or
a constraint on exposure disparity conditional on quality,
such as

Var (E;(t) | ¢i € [g,q + dg]) <7, (34)
which limits how much exposure varies among similar-
quality sellers. Implementing such constraints requires
a model that predicts how policy changes affect the
distribution of reputations and exposures.

A natural class of policies balances exploitation with
exploration. In bandit terms, each seller is an arm with
unknown mean quality. Showing a seller yields information
through ratings and yields reward through buyer surplus.
A purely greedy policy ranks by current posterior mean,
which can amplify noise. An upper-confidence-bound or
Thompson-sampling policy introduces exploration. For
reputation systems, a conservative lower-confidence bound
may be used for safety, but it can also penalize low-sample
sellers and create lock-in. A symmetric confidence-bound
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policy can be considered:

score; (t) = f1;(t) + B/ 0i(t),

where 5 > 0 encourages exploring uncertain sellers by
increasing their score.  This tends to allocate some
exposure to low-sample sellers, increasing learning and
potentially reducing long-run bias due to early noise [23].
However, exploration may reduce short-run buyer surplus
if uncertain sellers have lower expected quality.

(35)

The design of the aggregation rule can mitigate bias by
accounting for selection and by reporting uncertainty. Dis-
playing only a point estimate S; hides variance differences
and encourages overreaction to small-sample fluctuations.
Displaying a credible interval or a volume indicator can al-
low buyers to interpret scores appropriately. From a mod-
eling perspective, one can define a displayed reputation as
a shrinkage estimator:

Kpo + > Yij

: (36)
which reduces variance for low n;. Shrinkage reduces
amplification of early noise because extreme early averages
are pulled toward pg. However, if ug differs across groups
or categories and is estimated from historical data affected
by prior bias, shrinkage can import historical distortions.
A group-conditional prior can partially address this, but
it raises fairness concerns if group labels are sensitive. An
alternative is to use category-level priors based on objective
metrics rather than historical ratings.

Review solicitation and incentives are part of the mech-
anism. If the platform offers prompts or reminders to
rate, the selection function p(-) changes. A mechanism
that increases rating rates uniformly can reduce variance
and thereby reduce the curvature-based bias term associ-
ated with E[u?]. However, if prompts are targeted based
on reputation or exposure, they can reinforce feedback
loops. Therefore, a design principle is to avoid making
rating propensity a steep function of displayed reputation.
In the model, this means controlling v in the propensity
equation, potentially by interface design that standardizes
prompts regardless of reputation [24].

Eligibility thresholds create discontinuities that can
magnify bias. If sellers below a threshold are suspended,
then a small early negative shock can have permanent
effects. One can replace hard thresholds with smooth
penalties. For example, instead of deplatforming below
s, reduce exposure smoothly using a logistic function:

1

El(t) x 1+ exp{—k(si(t) - 5)}’

(37)

where k controls steepness. Smaller k reduces discontinuity
and can reduce hysteresis. Safety concerns may still require
thresholds for extreme cases, but for moderate ranges,
smoothing can improve statistical properties.
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Optimization can be formalized as selecting k, 7, and
exploration parameters to minimize a combined loss:

t

L) =Ey l:/ K(qm(s), Sm(s)(s)) ds| + AEg [EE(t)ﬂ ,

° (3)
where m(s) denotes the seller matched at time s and
{ penalizes low-quality matches, while the second term
penalizes bias. Solving this requires simulation or PDE
methods described earlier.  Gradient estimates can be
obtained via finite differences in 6 or via stochastic
gradients if the policy is differentiable and the simulation
is reparameterized. In practice, platforms may restrict to
a small grid of policy parameters and choose the best via
offline evaluation and controlled experiments.

A fairness-relevant constraint can be expressed in terms
of equality of opportunity for exposure conditional on
quality. Let G; denote group membership. A constraint
might require that for any quality quantile, the expected
exposure is similar across groups:

[E[E:(t) | i € Qr, Gi = 0] = E[E;i(t) | ¢; € Qr,Gi = 1]| < e,

(39)
where ) denotes a neighborhood of the 7th quantile [25].
Because g; is latent, enforcement would rely on estimated
quality or proxies, and uncertainty must be acknowledged.
A robust approach is to enforce constraints with respect
to posterior distributions over ¢;, yielding probabilistic
constraints. This often increases computational complexity
but aligns with the uncertainty inherent in reputations.

The welfare effects of bias constraints can be non-
monotone.  Reducing coupling may reduce allocative
efficiency in the short run if reputations contain useful
information.  But reducing coupling can also improve
efficiency in the long run by preventing lock-in and by
improving learning for a broader set of sellers. Therefore,
mechanism design should evaluate time horizons explicitly.
A policy that increases buyer surplus by 2% over one week
might decrease it over a year if it discourages entry or
reduces learning. Dynamic evaluation is essential.

The framework also clarifies the role of transparency.
If buyers understand that low-sample reputations are
uncertain, they may discount them, reducing the platform’s
need to control coupling. However, if buyers over-trust star
averages, then the platform's ranking policy has greater
responsibility for preventing overreaction to noise. In model
terms, buyer utility coefficient oy measures how responsive
demand is to displayed reputation. High ag increases
feedback strength because small changes in S generate
large changes in \;(t). Interface design that reduces o by
contextualizing scores can therefore reduce feedback-loop
bias without changing ranking algorithms [26]. Estimating
as from choice data is thus directly relevant to mechanism
design.

Finally, review text offers opportunities for richer signals
but also for new biases. Text-based reputation features
can be more informative than stars, yet they may
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be more sensitive to language style, cultural norms,
and expectations, introducing systematic differences in
sentiment expression. If platforms use text embeddings
to rank sellers, they may inadvertently couple exposure to
linguistic patterns correlated with group membership rather
than quality. The bias framework extends by treating
text features as additional noisy measurements with their
own selection and expectation effects. Mechanism design
can mitigate this by calibrating text-based scores against
objective outcomes, or by limiting their use in exposure
decisions.

Conclusion

This paper developed a technical framework for quanti-
fying feedback-loop bias in two-sided marketplaces where
ratings, reviews, and reputation mechanisms interact with
ranking and exposure policies. The core idea is that reputa-
tional signals are not merely measurements of latent quality
but endogenous objects shaped by the policy rules that use
them. When exposure depends on reputation and reputa-
tion depends on the stream of interactions produced by
exposure, stochastic early variation and endogenous rater
composition can be amplified into persistent differences in
visibility and outcomes. Feedback-loop bias was defined as
the difference in expected outcomes between the deployed
coupled policy and a benchmark policy that weakens cou-
pling, with outcomes including exposure-weighted reputa-
tional error, allocative efficiency, and welfare proxies.

A decomposition highlighted several channels: selec-
tion on reputational noise through convex exposure map-
pings, endogenous rater composition and expectation ef-
fects that shift rating behavior as a function of displayed
reputation, and nonlinear aggregation and thresholding
that introduce discontinuities and absorbing states. lden-
tification strategies were described for both experimental
and observational settings, including randomized ranking
perturbations, discontinuity-based designs around policy
thresholds, hierarchical latent-quality models that incor-
porate rating propensity, and simulation-based counterfac-
tual evaluation. The distributional dynamics induced by
state-dependent learning were connected to Fokker—Planck
equations, motivating numerical approaches such as finite
element discretization and Monte Carlo simulation with
variance reduction. Additional diagnostics such as fre-
quency spectrum analysis and logarithmic signal-to-noise
measures were incorporated to characterize stability and
learning under alternative policies.

Mechanism design implications were framed as opti-
mization under bias and disparity constraints, emphasizing
exploration-exploitation trade-offs, uncertainty-aware dis-
play and aggregation, and the risks introduced by hard
thresholds and by uncalibrated text-based reputation fea-
tures. The overall result is a set of estimands and com-
putational tools for evaluating when and how reputation
systems may generate bias through feedback, and for com-
paring policy alternatives in terms of efficiency, learning,
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and distributional outcomes without presuming a univer-
sally optimal design [27].
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